1
|
Pfersich J, Arauzo PJ, Modugno P, Titirici M, Kruse A. Evaluation of the Char Formation During the Hydrothermal Treatment of Wooden Balls. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300169. [PMID: 38094867 PMCID: PMC10714026 DOI: 10.1002/gch2.202300169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/12/2023] [Indexed: 10/16/2024]
Abstract
With wooden balls, a visualization of the hydrothermal carbonization to show the progress of the conversion to char is presented. In the present study, the balls represent the particles of biomass to investigate the differences in conversion outside and inside of biomass particles, during hydrothermal carbonization. A special focus is on hydrochar and pyrochar formation. The wooden balls are treated in subcritical water at 220 °C for holding times between 0 and 960 min. Even after 960 min, hydrolysis of the original biomass is incomplete as cellulose and hemicellulose are linked by lignin, inhibiting the reaction with water. Moreover, two different pathways of char production can be observed. Inside of the wooden ball pyrochar is formed as any water got that deep in, on the surface hydrochar is fixed, originated from the surrounding liquid. On the ground of the HTC reactor, a thin, brittle precipitate of likely hydrochar or humins can be found either from the precipitation of loosely attached compounds on the surface of the biomass or direct precipitation from the liquid.
Collapse
Affiliation(s)
- Jens Pfersich
- Conversion Technologies of Biobased ResourcesUniversity of HohenheimGarbenstrasse 970599StuttgartGermany
| | - Pablo J. Arauzo
- Conversion Technologies of Biobased ResourcesUniversity of HohenheimGarbenstrasse 970599StuttgartGermany
| | - Pierpaolo Modugno
- School of Engineering and Materials ScienceQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | | | - Andrea Kruse
- Conversion Technologies of Biobased ResourcesUniversity of HohenheimGarbenstrasse 970599StuttgartGermany
| |
Collapse
|
2
|
Khoury O, Gaur R, Zohar M, Erel R, Laor Y, Posmanik R. Phosphorus recycling from waste activated sludge using the hydrothermal platform: Recovery, solubility and phytoavailability. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:23-31. [PMID: 37393753 DOI: 10.1016/j.wasman.2023.06.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
To address the grand challenge of increasing the sustainability of wastewater treatment plants, hydrothermal carbonization was studied as a nutrient recovery platform, transforming sludge into a valuable hydrochar. Carbonization was achieved at different temperatures (200-300 °C) and durations (30-120 min). The highest mass recovery (73%) was observed in the lowest temperature, while the lowest (49%) was obsereved at the highest temperature. Under all reaction conditions, phosphorus recovery values exceeded 80%, with the dominated fraction of inorganic-P in the hydrochar being HCl-extractable. Although HCl-extractable P is considered a moderately labile P fraction, P phytoavailability assays indicate that sewage sludge hydrochar is an excellent source for P, surpassing soluble P, likely due to its slow-release nature. We postulate that polyphosphates constitute a significant portion of this P pool. Overall, we emphasize the benefits of using HTC as a circular economy approach to convert sludge into a valuable hydrochar.
Collapse
Affiliation(s)
- Osama Khoury
- Institute of Soil, Water and Environmental Sciences, Newe Ya'ar Research Center, Agricultural Research Organization (ARO) - Volcani Institute, 30095, Israel; Department of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Rubia Gaur
- Institute of Soil, Water and Environmental Sciences, Newe Ya'ar Research Center, Agricultural Research Organization (ARO) - Volcani Institute, 30095, Israel
| | - Matat Zohar
- Institute of Soil, Water and Environmental Sciences, Newe Ya'ar Research Center, Agricultural Research Organization (ARO) - Volcani Institute, 30095, Israel
| | - Ran Erel
- Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization (ARO) - Volcani Institute, 85820, Israel
| | - Yael Laor
- Institute of Soil, Water and Environmental Sciences, Newe Ya'ar Research Center, Agricultural Research Organization (ARO) - Volcani Institute, 30095, Israel
| | - Roy Posmanik
- Institute of Soil, Water and Environmental Sciences, Newe Ya'ar Research Center, Agricultural Research Organization (ARO) - Volcani Institute, 30095, Israel.
| |
Collapse
|
3
|
Su X, He J, Khan MA, Chang K, Liu Y, Guo G, Li X, Jin F, Kuang M, Gouda S, Huang Q. Potential Application Performance of Hydrochar from Kitchen Waste: Effects of Salt, Oil, Moisture, and pH. TOXICS 2023; 11:679. [PMID: 37624184 PMCID: PMC10459985 DOI: 10.3390/toxics11080679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
The surge in kitchen waste production is causing food-borne disease epidemics and is a public health threat worldwide. Additionally, the effectiveness of conventional treatment approaches may be hampered by KW's high moisture, salt, and oil content. Hydrothermal carbonization (HTC) is a promising new technology to convert waste biomass into environmentally beneficial derivatives. This study used simulated KW to determine the efficacy of hydrothermal derivatives (hydrochar) with different salt and oil content, pH value, and solid-liquid ratio for the removal of cadmium (Cd) from water and identify their high heating value (HHV). The findings revealed that the kitchen waste hydrochar (KWHC) yield decreased with increasing oil content. When the water content in the hydrothermal system increased by 90%, the yield of KWHC decreased by 65.85%. The adsorption capacity of KWHC remained stable at different salinities. The KWHC produced in the acidic environment increases the removal efficiency of KWHC for Cd. The raw material was effectively transformed into a maximum HHV (30.01 MJ/kg). HTC is an effective and secure method for the resource utilization of KW based on the adsorption capacity and combustion characteristic indices of KWHC.
Collapse
Affiliation(s)
- Xuesong Su
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| | - Jizu He
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| | | | - Kenlin Chang
- Institute of Environmental Engineering, Department of Public Health, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;
| | - Yin Liu
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| | - Genmao Guo
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| | - Xiaohui Li
- Hainan Inspection and Detection Center for Modern Agriculture, Haikou 570100, China
| | - Fangming Jin
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| | - Meijuan Kuang
- Hainan Pujin Environmental Engineeering, Haikou 570100, China
| | - Shaban Gouda
- Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Benha University, Toukh 13736, Egypt
| | - Qing Huang
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Yahav Spitzer R, Belete YZ, Johnson HA, Kolusheva S, Mau V, Gross A. Hydrothermal carbonization reaction severity as an indicator of human-excreta-derived hydrochar properties and it's combustion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162176. [PMID: 36775163 DOI: 10.1016/j.scitotenv.2023.162176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Hydrothermal carbonization (HTC) is an emerging technology that may potentially address sanitation problems and energy scarcity. However, the significance of the parameters that govern HTC (e.g., temperature and time) is not fully understood, in particular for human excreta. A simplified coalification model was used to describe the 'strength' of thermal reactions by combining temperature and time into a single parameter, the severity factor. This study is the first to assess the extent to which a severity coalification model can predict the properties of human-excreta-derived hydrochar for a given severity with different combinations of reaction time and temperature. HTC experiments with raw human excreta were undertaken with 50 mL batch reactors at five different severities. Severity was established with different combinations of temperature (180 °C, 210 °C, and 240 °C) and reaction time based on the severity-factor equation. The resulting hydrochars were tested for combustion properties, and the respective gas emission as well as, physicochemical and surface area parameters. Significant correlations were found between severity and yield (R2 = 0.88), carbon content (R2 = 0.85), and calorific value (R2 = 0.90), with the properties being similar for a given severity but varying with different severities. Hydrochar's contact angle increased from 53.1° to 81.3° with increasing SF, while surface area remained low, ranging from <1 to 5.1 m2g-1, with no definite correlation to SF. Combustion profiles for a given severity were generally similar, but the ignition, peak, and burnout temperatures differed between severities. Gram-Schmidt curves indicated that gas emission profiles are similar for a given severity but vary with different severities. The main gases emitted in combustion were virtually identical in all treatments, and included CO2, alkenes (C9, C10), CH4, and H2O. It is concluded that many properties of hydrochar can be inferred from the severity factor.
Collapse
Affiliation(s)
- Reut Yahav Spitzer
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker campus, 84990, Israel
| | - Yonas Zeslase Belete
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker campus, 84990, Israel
| | - Hunter A Johnson
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker campus, 84990, Israel
| | - Sofiya Kolusheva
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501 Be'er Sheva, Israel
| | - Vivian Mau
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker campus, 84990, Israel
| | - Amit Gross
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker campus, 84990, Israel.
| |
Collapse
|
5
|
Benedetti V, Pecchi M, Baratieri M. Combustion kinetics of hydrochar from cow-manure digestate via thermogravimetric analysis and peak deconvolution. BIORESOURCE TECHNOLOGY 2022; 353:127142. [PMID: 35413420 DOI: 10.1016/j.biortech.2022.127142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Hydrothermal carbonization (HTC) can convert wet biomass into hydrochar (HC), a solid carbonaceous material exploitable as fuel. In this study, HTC was applied to anaerobic digestate from cow manure. HCs obtained at three HTC temperatures (180, 220, 250 °C) were characterized in detail and their combustion behavior was investigated by thermogravimetric analysis (TGA) coupled with peak deconvolution. Increasing HTC temperatures increased the fixed carbon content (17.9-20.7%), the ash content (27.2-32.5%) and the calorific value (14.3-18.2 MJ/kg), while decreased the hydrogen (5.01-4.54%) and oxygen content (24.09-12.35%) of HCs. DTG profiles peak deconvolution unveils the presence of five major components in the HCs. HCs combustion kinetics were studied applying the KAS method. Average apparent activation energy values of 100, 88, 67 kJ mol-1 were obtained for HC180, HC220, HC250, respectively. HTC at 250 °C produced the HC with the best fuel characteristics.
Collapse
Affiliation(s)
- Vittoria Benedetti
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| | - Matteo Pecchi
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 1, 39100, Bolzano, Italy; Smith School of Chemical and Biomolecular Engineering, Cornell University Ithaca, NY, USA.
| | - Marco Baratieri
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| |
Collapse
|
6
|
Preisner M, Smol M, Horttanainen M, Deviatkin I, Havukainen J, Klavins M, Ozola-Davidane R, Kruopienė J, Szatkowska B, Appels L, Houtmeyers S, Roosalu K. Indicators for resource recovery monitoring within the circular economy model implementation in the wastewater sector. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114261. [PMID: 34923410 DOI: 10.1016/j.jenvman.2021.114261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The European Union is currently in the process of transformation toward a circular economy model in which different areas of activity should be integrated for more efficient management of raw materials and waste. The wastewater sector has a great potential in this regard and therefore is an important element of the transformation process to the circular economy model. The targets of the circular economy policy framework such as resource recovery are tightly connected with the wastewater treatment processes and sewage sludge management. With this in view, the present study aims to review existing indicators on resource recovery that can enable efficient monitoring of the sustainable and circular solutions implemented in the wastewater sector. Within the reviewed indicators, most of them were focused on technological aspects of resource recovery processes such as nutrient removal efficiency, sewage sludge processing methods and environmental aspects as the pollutant share in the sewage sludge or its ashes. Moreover, other wide-scope indicators such as the wastewater service coverage or the production of bio-based fertilizers and hydrochar within the wastewater sector were analyzed. The results were used for the development of recommendations for improving the resources recovery monitoring framework in the wastewater sector and a proposal of a circularity indicator for a wastewater treatment plant highlighting new challenges for further researches and wastewater professionals.
Collapse
Affiliation(s)
- Michał Preisner
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland.
| | - Marzena Smol
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Feasibility of Coupling Anaerobic Digestion and Hydrothermal Carbonization: Analyzing Thermal Demand. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Anaerobic digestion is a biological process with wide application for the treatment of high organic-containing streams. The production of biogas and the lack of oxygen requirements are the main energetic advantages of this process. However, the digested stream may not readily find a final disposal outlet under certain circumstances. The present manuscript analyzed the feasibility of valorizing digestate by the hydrothermal carbonization (HTC) process. A hypothetical plant treating cattle manure and cheese whey as co-substrate (25% v/w, wet weight) was studied. The global performance was evaluated using available data reported in the literature. The best configuration was digestion as a first stage with the subsequent treatment of digestate in an HTC unit. The treatment of manure as sole substrate reported a value of 752 m3/d of biogas which could be increased to 1076 m3/d (43% increase) when coupling an HTC unit for digestate post-treatment and the introduction of the co-substrate. However, the high energy demand of the combined configurations indicated, as the best alternative, the valorization of just a fraction (15%) of digestate to provide the benefits of enhancing biogas production. This configuration presented a much better energy performance than the thermal hydrolysis pre-treatment of manure. The increase in biogas production does not compensate for the high energy demand of the pre-treatment unit. However, several technical factors still need further research to make this alternative a reality, as it is the handling and pumping of high solid slurries that significantly affects the energy demand of the thermal treatment units and the possible toxicity of hydrochar when used in a biological process.
Collapse
|
8
|
Pyrolysis of Solid Digestate from Sewage Sludge and Lignocellulosic Biomass: Kinetic and Thermodynamic Analysis, Characterization of Biochar. SUSTAINABILITY 2021. [DOI: 10.3390/su13179642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study investigates the pyrolysis behavior and reaction kinetics of two different types of solid digestates from: (i) sewage sludge and (ii) a mixture of sewage sludge and lignocellulosic biomass—Typha latifolia plant. Thermogravimetric data in the temperature range 25–800 °C were analyzed using Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose kinetic methods, and the thermodynamic parameters (ΔH, ΔG, and ΔS) were also determined. Biochars were characterized using different chemical methods (FTIR, SEM–EDS, XRD, heavy metal, and nutrient analysis) and tested as soil enhancers using a germination test. Finally, their potential for biosorption of NH4+, PO43−, Cu2+, and Cd2+ ions was studied. Kinetic and thermodynamic parameters revealed a complex degradation mechanism of digestates, as they showed higher activation energies than undigested materials. Values for sewage sludge digestate were between 57 and 351 kJ/mol, and for digestate composed of sewage sludge and T. latifolia between 62 and 401 kJ/mol. Characterizations of biochars revealed high nutrient content and promising potential for further use. The advantage of biochar obtained from a digestate mixture of sewage sludge and lignocellulosic biomass is the lower content of heavy metals. Biosorption tests showed low biosorption capacity of digestate-derived biochars and their modifications for NH4+ and PO43− ions, but high biosorption capacity for Cu2+ and Cd2+ ions. Modification with KOH was more efficient than modification with HCl. The digestate-derived biochars exhibited excellent performance in germination tests, especially at concentrations between 6 and 10 wt.%.
Collapse
|
9
|
Alshareef SA, Otero M, Alanazi HS, Siddiqui MR, Khan MA, Alothman ZA. Upcycling olive oil cake through wet torrefaction to produce hydrochar for water decontamination. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|