1
|
Kusano R, Kusano Y. Applications of Plasma Technologies in Recycling Processes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1687. [PMID: 38612199 PMCID: PMC11012531 DOI: 10.3390/ma17071687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Plasmas are reactive ionised gases, which enable the creation of unique reaction fields. This allows plasmas to be widely used for a variety of chemical processes for materials, recycling among others. Because of the increase in urgency to find more sustainable methods of waste management, plasmas have been enthusiastically applied to recycling processes. This review presents recent developments of plasma technologies for recycling linked to economical models of circular economy and waste management hierarchies, exemplifying the thermal decomposition of organic components or substances, the recovery of inorganic materials like metals, the treatment of paper, wind turbine waste, and electronic waste. It is discovered that thermal plasmas are most applicable to thermal processes, whereas nonthermal plasmas are often applied in different contexts which utilise their chemical selectivity. Most applications of plasmas in recycling are successful, but there is room for advancements in applications. Additionally, further perspectives are discussed.
Collapse
Affiliation(s)
- Reinosuke Kusano
- School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK;
| | - Yukihiro Kusano
- Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| |
Collapse
|
2
|
Omar RA, Talreja N, Chuhan D, Ashfaq M. Waste-derived carbon nanostructures (WD-CNs): An innovative step toward waste to treasury. ENVIRONMENTAL RESEARCH 2024; 246:118096. [PMID: 38171470 DOI: 10.1016/j.envres.2023.118096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
With the growing population, the accumulation of waste materials (WMs) (industrial/household waste) in the environment incessantly increases, affecting human health. Additionally, it affects the climate and ecosystem of terrestrial and water habitats, thereby needing effective management technology to control environmental pollution. In this aspect, managing these WMs to develop products that mitigate the associated issues is necessary. Researchers continue to focus on WMs management by adopting a circular economy. These WMs convert into useful/value-added products such as polymers and nanomaterials (NMs), especially carbon nanomaterials (CNs). The conversion/transformation of waste material into useful products is one of the best solutions for managing waste. Waste-derived CNs (WD-CNs) have established boundless promises for numerous applications like environmental remediation, energy, catalysts, sensors, and biomedical applications. This review paper discusses the several sources of waste material (agricultural, plastic, industrial, biomass, and other) transforming into WD-CNs, such as carbon nanotubes (CNTs), biochar, graphene, carbon nanofibers (CNFs), carbon dots, etc., are extensively elaborated and their application. The impact of metal doping within the WD-CNs is briefly discussed, along with their applicability to end applications.
Collapse
Affiliation(s)
- Rishabh Anand Omar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Neetu Talreja
- Department of Science, Faculty of Science and Technology, Alliance University, Anekal, Bengaluru-562 106, Karnataka, India.
| | - Divya Chuhan
- Department of Drinking Water and Sanitation, Ministry of Jal Shakti, 1208-A, Pandit Deendayal Antyodaya Bhawan, CGO Complex, Lodhi Road, New Delhi 110003 India
| | - Mohammad Ashfaq
- Department of Biotechnology, University Centre for Research & Development (UCRD), Chandigarh University, Gharaun, Mohali, 140413, Punjab, India.
| |
Collapse
|
3
|
Qian Q, Ren J. From plastic waste to potential wealth: Upcycling technologies, process synthesis, assessment and optimization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167897. [PMID: 37866600 DOI: 10.1016/j.scitotenv.2023.167897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Global plastics production has doubled since the beginning of 21st century. Efficient technology is called for plastics waste valorization. The current review provides an overview of the main waste plastic chemical upcycling technologies to produce value-added products. Various technologies including gasification and pyrolysis are under reviewed. However, several review literatures have paid attention to the details and experimental progress in these chemical upcycling techniques. In this review, we attempt to conclude the progress in a multi-scale systems-by-systems perspective. After a brief overview of the current state-of-the-art chemical upcycling techniques, larger-scale process synthesis, assessment, and optimization methodologies to address the sustainability and environmental issues are summarized. Techno-economic analysis and life cycle assessment are selected as two powerful tools for process assessment. Three particular application scenarios of optimization methodologies including experimental design, process synthesis and supply chain management are consequently introduced. Very little work on review articles have summarized the plastic waste-to-wealth process in the systems engineering perspective. Review results show that (1) gasification and pyrolysis offer promising avenues for the conversion of plastic waste into valuable products. These technologies can be integrated with other subsystems to enhance the economic and environmental performance of the overall system. (2) Response surface methodology is commonly used in experimental design and parameter optimization. It allows researchers to systematically investigate the effects of various parameters and optimize process conditions to maximize desired outputs. (3) Superstructure optimization frameworks are valuable tools for process synthesis and pathway selection in plastic waste conversion. However, the potential superstructure is pre-defined. (4) Green supply chain and multi-objective supply chain frameworks can be applied to the design of plastic waste recycling networks, taking into account both economic and environmental considerations.
Collapse
Affiliation(s)
- Qiming Qian
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jingzheng Ren
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
4
|
Shah HH, Amin M, Iqbal A, Nadeem I, Kalin M, Soomar AM, Galal AM. A review on gasification and pyrolysis of waste plastics. Front Chem 2023; 10:960894. [PMID: 36819712 PMCID: PMC9936530 DOI: 10.3389/fchem.2022.960894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/16/2022] [Indexed: 02/05/2023] Open
Abstract
Gasification and pyrolysis are thermal processes for converting carbonaceous substances into tar, ash, coke, char, and gas. Pyrolysis produces products such as char, tar, and gas, while gasification transforms carbon-containing products (e.g., the products from pyrolysis) into a primarily gaseous product. The composition of the products and their relative quantities are highly dependent on the configuration of the overall process and on the input fuel. Although in gasification, pyrolysis processes also occur in many cases (yet prior to the gasification processes), gasification is a common description for the overall technology. Pyrolysis, on the other hand, can be used without going through the gasification process. The current study evaluates the most common waste plastics valorization routes for producing gaseous and liquid products, as well as the key process specifications that affected the end final products. The reactor type, temperatures, residence time, pressure, the fluidizing gas type, the flow rate, and catalysts were all investigated in this study. Pyrolysis and waste gasification, on the other hand, are expected to become more common in the future. One explanation for this is that public opinion on the incineration of waste in some countries is a main impediment to the development of new incineration capacity. However, an exceptional capability of gasification and pyrolysis over incineration to conserve waste chemical energy is also essential.
Collapse
Affiliation(s)
| | - Muhammad Amin
- Department of Energy Systems Engineering, Seoul National University, Seoul, Republic ofKorea
| | - Amjad Iqbal
- Department of Materials Technologies, Faculty of Materials Engineering, Silesian University of Technology, Gliwice, Poland,CEMMPRE - Centre for Mechanical Engineering Materials and Processes, Department of Mechanical Engineering, Rua Luís Reis Santos, Coimbra, Portugal,*Correspondence: Amjad Iqbal,
| | - Irfan Nadeem
- Laboratory for Tribology and Interface Nanotechnology, Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Mitjan Kalin
- Laboratory for Tribology and Interface Nanotechnology, Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Arsalan Muhammad Soomar
- Faculty of Electrical and Control Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Ahmed M. Galal
- Mechanical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Wadi ad-Dawasir, Saudi Arabia,Production Engineering and Mechanical Design Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| |
Collapse
|