1
|
Jannesari M, Caslin A, English NJ. Electric field-based air nanobubbles (EF-ANBs) irrigation on efficient crop cultivation with reduced fertilizer dependency. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121228. [PMID: 38823304 DOI: 10.1016/j.jenvman.2024.121228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
The advent of air nanobubbles (ANBs) has opened up a wide range of commercial applications spanning industries including wastewater treatment, food processing, biomedical engineering, and agriculture. The implementation of electric field-based air nanobubbles (EF-ANBs) irrigation presents a promising approach to enhance agricultural crop efficiency, concurrently promoting environmentally sustainable practices through reducing fertilizer usage. This study investigated the impact of EF-ANBs on the germination and overall growth of agricultural crops in soil. Results indicate a substantial enhancement in both germination rates and plant growth upon the application of EF-ANBs. Notably, the introduction of ANBs led to a significant enhancement in the germination rate of lettuce and basil, increasing from approximately 20% to 96% and from 16% to 53%, respectively over two days. Moreover, the presence of EF-ANBs facilitates superior hypocotyl elongation, exhibiting a 2.8- and a 1.6-fold increase in the elongation of lettuce and basil, respectively, over a six-day observation period. The enriched oxygen levels within the air nanobubbles expedite aerobic respiration, amplifying electron leakage from the electron transport chain (ETC) and resulting in heightened reactive oxygen species (ROS) production, playing a pivotal role in stimulating growth signaling. Furthermore, the application of EF-ANBs in irrigation surpasses the impact of traditional fertilizers, demonstrating a robust catalytic effect on the shoot, stem, and root length, as well as the leaf count of lettuce plants. Considering these parameters, a single fertilizer treatment (at various concentrations) during EF-ANBs administration, demonstrates superior plant growth compared to regular water combined with fertilizer. The findings underscore the synergistic interaction between aerobic respiration and the generation of ROS in promoting plant growth, particularly in the context of reduced fertilizer levels facilitated by the presence of EF-ANBs. This promising correlation holds significant potential in establishing more sustainability for ever-increasing environmentally conscious agriculture.
Collapse
Affiliation(s)
- Marziyeh Jannesari
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| | - Anna Caslin
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland
| | - Niall J English
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland.
| |
Collapse
|
2
|
Hung JC, Li NJ, Peng CY, Yang CC, Ko SS. Safe Farming: Ultrafine Bubble Water Reduces Insect Infestation and Improves Melon Yield and Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:537. [PMID: 38498517 PMCID: PMC10891724 DOI: 10.3390/plants13040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Melon pest management relies on the excessive application of pesticides. Reducing pesticide spraying has become a global issue for environmental sustainability and human health. Therefore, developing a new cropping system that is sustainable and eco-friendly is important. This study found that melon seedlings irrigated with ultrafine water containing H2 and O2 (UFW) produced more root hairs, increased shoot height, and produced more flowers than the control irrigated with reverse osmosis (RO) water. Surprisingly, we also discovered that UFW irrigation significantly reduced aphid infestation in melons. Based on cryo-scanning electron microscope (cryo-SEM) observations, UFW treatment enhanced trichome development and prevented aphid infestation. To investigate whether it was H2 or O2 that helped to deter insect infestation, we prepared UF water enrichment of H2 (UF+H2) and O2 (UF+O2) separately and irrigated melons. Cryo-SEM results indicated that both UF+H2 and UF+O2 can increase the density of trichomes in melon leaves and petioles. RT-qPCR showed that UF+H2 significantly increased the gene expression level of the trichome-related gene GLABRA2 (GL2). We planted melons in a plastic greenhouse and irrigated them with ultrafine water enrichment of hydrogen (UF+H2) and oxygen (UF+O2). The SPAD value, photosynthetic parameters, root weight, fruit weight, and fruit sweetness were all better than the control without ultrafine water irrigation. UFW significantly increased trichome development, enhanced insect resistance, and improved fruit traits. This system thus provides useful water management for pest control and sustainable agricultural production.
Collapse
Affiliation(s)
- Jo-Chi Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan;
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Ning-Juan Li
- Season Agricultural Technology Co., Ltd., Tainan 711, Taiwan; (N.-J.L.); (C.-Y.P.)
| | - Ching-Yen Peng
- Season Agricultural Technology Co., Ltd., Tainan 711, Taiwan; (N.-J.L.); (C.-Y.P.)
| | - Ching-Chieh Yang
- Season Agricultural Technology Co., Ltd., Tainan 711, Taiwan; (N.-J.L.); (C.-Y.P.)
| | - Swee-Suak Ko
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan;
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| |
Collapse
|
3
|
Jia M, Farid MU, Kharraz JA, Kumar NM, Chopra SS, Jang A, Chew J, Khanal SK, Chen G, An AK. Nanobubbles in water and wastewater treatment systems: Small bubbles making big difference. WATER RESEARCH 2023; 245:120613. [PMID: 37738940 DOI: 10.1016/j.watres.2023.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/22/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Since the discovery of nanobubbles (NBs) in 1994, NBs have been attracting growing attention for their fascinating properties and have been studied for application in various environmental fields, including water and wastewater treatment. However, despite the intensive research efforts on NBs' fundamental properties, especially in the past five years, controversies and disagreements in the published literature have hindered their practical implementation. So far, reviews of NB research have mainly focused on NBs' role in specific treatment processes or general applications, highlighting proof-of-concept and success stories primarily at the laboratory scale. As such, there lacks a rigorous review that authenticates NBs' potential beyond the bench scale. This review aims to provide a comprehensive and up-to-date analysis of the recent progress in NB research in the field of water and wastewater treatment at different scales, along with identifying and discussing the challenges and prospects of the technology. Herein, we systematically analyze (1) the fundamental properties of NBs and their relevancy to water treatment processes, (2) recent advances in NB applications for various treatment processes beyond the lab scale, including over 20 pilot and full-scale case studies, (3) a preliminary economic consideration of NB-integrated treatment processes (the case of NB-flotation), and (4) existing controversies in NBs research and the outlook for future research. This review is organized with the aim to provide readers with a step-by-step understanding of the subject matter while highlighting key insights as well as knowledge gaps requiring research to advance the use of NBs in the wastewater treatment industry.
Collapse
Affiliation(s)
- Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
| | - Nallapaneni Manoj Kumar
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region; Center for Circular Supplies, HICCER - Hariterde International Council of Circular Economy Research, Palakkad, Kerala 678631, India
| | - Shauhrat S Chopra
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - John Chew
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|