1
|
Liu YN, Fan ZX, Lin YX, Kaewmano A, Wei XL, Fu PL, Grießinger J, Bräuning A. Impact of extreme pre-monsoon drought on xylogenesis and intra-annual radial increments of two tree species in a tropical montane evergreen broad-leaved forest, southwest China. TREE PHYSIOLOGY 2024; 44:tpae086. [PMID: 39030688 PMCID: PMC11387012 DOI: 10.1093/treephys/tpae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Tropical montane evergreen broad-leaved forests cover the majority of forest areas and have high carbon storage in Xishuangbanna, southwest China. However, stem radial growth dynamics and their correlations with climate factors have never been analyzed in this forest type. By combining bi-weekly microcoring and high-resolution dendrometer measurements, we monitored xylogenesis and stem radius variations of the deciduous species Betula alnoides Buch.-Ham. ex D. Don and the evergreen species Schima wallichii (DC.) Korth. We analyzed the relationships between weekly climate variables prior to sampling and the enlarging zone width or wall-thickening zone width, as well as weekly radial increments and climate factors during two consecutive years (2020 to 2021) showing contrasting hydrothermal conditions in the pre-monsoon season. In the year 2020, which was characterized by a warmer and drier pre-monsoon season, the onset of xylogenesis and radial increments of B. alnoides and S. wallichii were delayed by three months and one month, respectively, compared with the year 2021. In 2020, xylem formation and radial increments were significantly reduced for B. alnoides, but not for S. wallichii. The thickness of enlarging zone and wall-thickening zone in S. wallichii were positively correlated with relative humidity, and minimum and mean air temperature, but were negatively correlated with vapor pressure deficit during 2020 to 2021. The radial increments of both species showed significant positive correlations with precipitation and relative humidity, and negative correlations with vapor pressure deficit and maximum air temperature during two years. Our findings reveal that drier pre-monsoon conditions strongly delay growth initiation and reduce stem radial growth, providing deep insights to understand tree growth and carbon sequestration potential in tropical forests under a predicted increase in frequent drought events.
Collapse
Affiliation(s)
- Ya-Nan Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze-Xin Fan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Ailaoshan Station of Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jingdong, Yunnan 676209, China
| | - You-Xing Lin
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Arisa Kaewmano
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Lian Wei
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei-Li Fu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Ailaoshan Station of Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jingdong, Yunnan 676209, China
| | - Jussi Grießinger
- Department of Environment and Biodiversity, University of Salzburg, Salzburg 5020, Austria
| | - Achim Bräuning
- Institute of Geography, Friedrich-Alexander-University Erlangen-Nürnberg, Wetterkreuz, Erlangen 91058, Germany
| |
Collapse
|
2
|
Zhou B, Sterck F, Kruijt B, Fan ZX, Zuidema PA. Diel and seasonal stem growth responses to climatic variation are consistent across species in a subtropical tree community. THE NEW PHYTOLOGIST 2023; 240:2253-2264. [PMID: 37737019 DOI: 10.1111/nph.19275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Abstract
Understanding how intra-annual stem growth responds to atmospheric and soil conditions is essential for assessing the effects of climate extremes on forest productivity. In species-poor forests, such understanding can be obtained by studying stem growth of the dominant species. Yet, in species-rich (sub-)tropical forests, it is unclear whether these responses are consistent among species. We monitored intra-annual stem growth with high-resolution dendrometers for 27 trees belonging to 14 species over 5 yr in a montane subtropical forest. We quantified diel and seasonal stem growth patterns, verified to what extent observed growth patterns coincide across species and analysed their main climatic drivers. We found very consistent intra-annual growth patterns across species. Species varied in the rate but little in the timing of growth. Diel growth patterns revealed that - across species - trees mainly grew before dawn when vapour pressure deficit (VPD) was low. Within the year, trees mainly grew between May and August driven by temperature and VPD, but not by soil moisture. Our study reveals highly consistent stem growth patterns and climatic drivers at community level. Further studies are needed to verify whether these results hold across climates and forests, and whether they can be scaled up to estimate forest productivity.
Collapse
Affiliation(s)
- Bo Zhou
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, 6700 AA, the Netherlands
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, 6700 AA, the Netherlands
| | - Bart Kruijt
- Water Systems and Global Change Group, Wageningen University and Research, Wageningen, 6700 AA, the Netherlands
| | - Ze-Xin Fan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jingdong, Yunnan, 676209, China
| | - Pieter A Zuidema
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, 6700 AA, the Netherlands
| |
Collapse
|
3
|
Aryal S, Grießinger J, Dyola N, Gaire NP, Bhattarai T, Bräuning A. INTRAGRO: A machine learning approach to predict future growth of trees under climate change. Ecol Evol 2023; 13:e10626. [PMID: 37869443 PMCID: PMC10587741 DOI: 10.1002/ece3.10626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
The escalating impact of climate change on global terrestrial ecosystems demands a robust prediction of the trees' growth patterns and physiological adaptation for sustainable forestry and successful conservation efforts. Understanding these dynamics at an intra-annual resolution can offer deeper insights into tree responses under various future climate scenarios. However, the existing approaches to infer cambial or leaf phenological change are mainly focused on certain climatic zones (such as higher latitudes) or species with foliage discolouration during the fall season. In this study, we demonstrated a novel approach (INTRAGRO) to combine intra-annual circumference records generated by dendrometers coupled to the output of climate models to predict future tree growth at intra-annual resolution using a series of supervised and unsupervised machine learning algorithms. INTRAGRO performed well using our dataset, that is dendrometer data of P. roxburghii Sarg. from the subtropical mid-elevation belt of Nepal, with robust test statistics. Our growth prediction shows enhanced tree growth at our study site for the middle and end of the 21st century. This result is remarkable since the predicted growing season by INTRAGRO is expected to shorten due to changes in seasonal precipitation. INTRAGRO's key advantage is the opportunity to analyse changes in trees' intra-annual growth dynamics on a global scale, regardless of the investigated tree species, regional climate and geographical conditions. Such information is important to assess tree species' growth performance and physiological adaptation to growing season change under different climate scenarios.
Collapse
Affiliation(s)
- Sugam Aryal
- Institut für GeographieFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenBayernGermany
| | - Jussi Grießinger
- Institut für GeographieFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenBayernGermany
| | - Nita Dyola
- Institute of Tibetan Plateau ResearchChinese Academy of Sciences, State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE)BeijingChina
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences FondamentalesUniversitédu Québec à ChicoutimiChicoutimiQuebecCanada
| | - Narayan Prasad Gaire
- Department of Environmental Science, Patan Multiple CampusTribhuvan UniversityLalitpurNepal
| | | | - Achim Bräuning
- Institut für GeographieFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenBayernGermany
| |
Collapse
|
4
|
Zeng Q, Lebreton A, Man X, Jia L, Wang G, Gong S, Buée M, Wu G, Dai Y, Yang Z, Martin FM. Ecological Drivers of the Soil Microbial Diversity and Composition in Primary Old-Growth Forest and Secondary Woodland in a Subtropical Evergreen Broad-Leaved Forest Biome in the Ailao Mountains, China. Front Microbiol 2022; 13:908257. [PMID: 35770159 PMCID: PMC9234548 DOI: 10.3389/fmicb.2022.908257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
Replacement of primary old-growth forests by secondary woodlands in threatened subtropical biomes drives important changes at the level of the overstory, understory and forest floor, but the impact on belowground microbial biodiversity is yet poorly documented. In the present study, we surveyed by metabarcoding sequencing, the diversity and composition of soil bacteria and fungi in the old-growth forest, dominated by stone oaks (Lithocarpus spp.) and in the secondary Yunnan pine woodland of an iconic site for biodiversity research, the Ailaoshan National Nature Reserve (Ailao Mountains, Yunnan province, China). We assessed the effect of forest replacement and other environmental factors, including soil horizons, soil physicochemical characteristics and seasonality (monsoon vs. dry seasons). We showed that tree composition and variation in soil properties were major drivers for both bacterial and fungal communities, with a significant influence from seasonality. Ectomycorrhizal Operational Taxonomic Units (OTUs) dominated the functional fungal guilds. Species richness and diversity of the bacterial and fungal communities were higher in the pine woodland compared to the primary Lithocarpus forest, although prominent OTUs were different. The slightly lower complexity of the microbiome in the primary forest stands likely resulted from environmental filtering under relatively stable conditions over centuries, when compared to the secondary pine woodlands. In the old-growth forest, we found a higher number of species, but that communities were homogeneously distributed, whereas in the pine woodlands, there is a slightly lower number of species present but the communities are heterogeneously distributed. The present surveys of the bacterial and fungal diversity will serve as references in future studies aiming to assess the impact of the climate change on soil microbial diversity in both old-growth forests and secondary woodlands in Ailaoshan.
Collapse
Affiliation(s)
- Qingchao Zeng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Annie Lebreton
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE-GrandEst-Nancy, Université de Lorraine, Champenoux, France
| | - Xiaowu Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Liukun Jia
- Chinese Academy of Sciences Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Kunming, China
| | - Gengshen Wang
- Chinese Academy of Sciences Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Kunming, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, China
| | - Sai Gong
- Chinese Academy of Sciences Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Kunming, China
| | - Marc Buée
- INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE-GrandEst-Nancy, Université de Lorraine, Champenoux, France
| | - Gang Wu
- Chinese Academy of Sciences Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Kunming, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, China
| | - Yucheng Dai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Zhuliang Yang
- Chinese Academy of Sciences Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Kunming, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming, China
| | - Francis M. Martin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE-GrandEst-Nancy, Université de Lorraine, Champenoux, France
| |
Collapse
|
5
|
Seasonal Drought Effects on Intra-Annual Stem Growth of Taiwan Pine along an Elevational Gradient in Subtropical China. FORESTS 2019. [DOI: 10.3390/f10121128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Knowledge of intra-annual stem growth dynamics across environmental gradients is important for advancing our ability to understand the adaptability and vulnerability of subtropical tree species to future climate change. To assess the effects of seasonal drought on intra-annual stem growth, stem radial variation of Taiwan pine (Pinus taiwanensis Hayata) was monitored with band dendrometers for two years along an elevation transect from 921 to 1402 m in the Lushan Mountains, a transect that covers the contrasting climatic growing conditions for Taiwan pine in southeastern China. We found that the onset of stem growth was nearly synchronous across the transect, in early April 2017 and in late March 2018, whereas large elevational differences were observed for the end of the growing season, which was much earlier at lower elevations. Tree stems frequently rehydrated during the dry growing seasons at the two higher elevations, suggesting that seasonal drought had minor influence on the offset of high-elevation stem growth. A substantial and continuous tree water deficit of low-elevation Taiwan pine was detected during dry seasons, leading to an early growth cessation in late July in both years. Tree water status (reflected by tree water deficit) revealed a higher sensitivity to precipitation and soil water content across wet- and dry-seasons at the lowest elevation than at high elevations, indicating that low-elevation stem radial growth was highly dependent on moisture variables over the whole growing season. Due to the influences of seasonal drought on growth cessation and rates, Taiwan pine produced a rather narrow annual growth at the lowest site, whereas high-elevation Taiwan pine could benefit from the optimal wet-season environmental conditions and the reactivation of cambial activity during dry seasons. Our findings suggest that the more frequent and intensive drought episodes in the future will reduce tree growth of Taiwan pine at the dry edge, probably resulting in upward shifting of the optimal elevation for Taiwan pine in subtropical China.
Collapse
|