1
|
Pereira Duarte R, Cancela Ramos HC, Rodrigues Xavier L, Azevedo Vimercati Pirovani A, Souza Rodrigues A, Turquetti-Moraes DK, Rodrigues da Silva Junior I, Motta Venâncio T, Silveira V, Gonzaga Pereira M. Comparative proteomic analysis of papaya bud flowers reveals metabolic signatures and pathways driving hermaphrodite development. Sci Rep 2024; 14:8867. [PMID: 38632280 PMCID: PMC11024100 DOI: 10.1038/s41598-024-59306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Papaya (Carica papaya) is a trioecious species with female, male, and hermaphrodite plants. Given the sex segregation, selecting hermaphroditic plants is vital for orchard establishment due to their greater commercial value. However, selecting hermaphrodite plants through sexing is laborious and costly. Moreover, environmental stressors can exacerbate the issue by potentially inducing abnormal flower development, thus affecting fruit quality. Despite these challenges, the molecular mechanisms governing sex development in papaya remain poorly understood. Thus, this study aimed to identify proteins associated with sex development in female and hermaphrodite flowers of papaya through comparative proteomic analysis. Proteins from flower buds at the early and late developmental stages of three papaya genotypes (UENF-CALIMAN 01, JS12, and Sunrise Solo 72/12) were studied via proteomic analysis via the combination of the shotgun method and nanoESI-HDMSE technology. In buds at an early stage of development, 496 (35.9%) proteins exhibited significantly different abundances between sexes for the SS72/12 genotype, 139 (10%) for the JS12 genotype, and 165 (11.9%) for the UC-01 genotype. At the final stage of development, there were 181 (13.5%) for SS72/12, 113 (8.4%) for JS12, and 125 (9.1%) for UC-01. The large group of differentially accumulated proteins (DAPs) between the sexes was related to metabolism, as shown by the observation of only the proteins that exhibited the same pattern of accumulation in the three genotypes. Specifically, carbohydrate metabolism proteins were up-regulated in hermaphrodite flower buds early in development, while those linked to monosaccharide and amino acid metabolism increased during late development. Enrichment of sporopollenin and phenylpropanoid biosynthesis pathways characterizes hermaphrodite samples across developmental stages, with predicted protein interactions highlighting the crucial role of phenylpropanoids in sporopollenin biosynthesis for pollen wall formation. Most of the DAPs played key roles in pectin, cellulose, and lignin synthesis and were essential for cell wall formation and male flower structure development, notably in the pollen coat. These findings suggest that hermaphrodite flowers require more energy for development, likely due to complex pollen wall formation. Overall, these insights illuminate the molecular mechanisms of papaya floral development, revealing complex regulatory networks and energetic demands in the formation of male reproductive structures.
Collapse
Affiliation(s)
- Rafaela Pereira Duarte
- Laboratório de Melhoramento Genético Vegetal - LMGV, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil.
| | - Helaine Christine Cancela Ramos
- Laboratório de Melhoramento Genético Vegetal - LMGV, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| | - Lucas Rodrigues Xavier
- Laboratório de Biotecnologia - LBT, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| | - Adriana Azevedo Vimercati Pirovani
- Laboratório de Melhoramento Genético Vegetal - LMGV, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| | - Alex Souza Rodrigues
- Laboratório de Melhoramento Genético Vegetal - LMGV, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| | - Dayana Kelly Turquetti-Moraes
- Laboratório de Química e Função de Proteínas e Peptídeos - LQFPP, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| | - Izaias Rodrigues da Silva Junior
- Laboratório de Melhoramento Genético Vegetal - LMGV, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| | - Thiago Motta Venâncio
- Laboratório de Química e Função de Proteínas e Peptídeos - LQFPP, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia - LBT, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
- Unidade de Biologia Integrativa, Setor de Genômica e Proteômica, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| | - Messias Gonzaga Pereira
- Laboratório de Melhoramento Genético Vegetal - LMGV, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, 28.013-602, Brazil
| |
Collapse
|
2
|
Zhang C, Zhang K, Chai Z, Song Y, Wang X, Duan Y, Zhang M. Identification of miRNAs and Target Genes at Key Stages of Sexual Differentiation in Androdioecious Osmanthus fragrans. Int J Mol Sci 2022; 23:ijms231810386. [PMID: 36142310 PMCID: PMC9499476 DOI: 10.3390/ijms231810386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Androdioecy is the crucial transition state in the evolutionary direction of hermaphroditism to dioecy, however, the molecular mechanisms underlying the formation of this sex system remain unclear. While popular in China for its ornamental and cultural value, Osmanthus fragrans has an extremely rare androdioecy breeding system, meaning that there are both male and hermaphroditic plants in a population. To unravel the mechanisms underlying the formation of androdioecy, we performed small RNA sequencing studies on male and hermaphroditic O. fragrans. A total of 334 miRNAs were identified, of which 59 were differentially expressed. Functional categorization revealed that the target genes of differentially expressed miRNAs were mainly involved in the biological processes of reproductive development and the hormone signal transduction pathway. We speculated that the miRNA160, miRNA167, miRNA393 and miRNA396 families may influence the sex differentiation in O. fragrans. Overall, our study is the first exploration of miRNAs in the growth and development process of O. fragrans, and is also the first study of androdioecious plants from the miRNA sequencing perspective. The analysis of miRNAs and target genes that may be involved in the sex differentiation process lay a foundation for the ultimate discovery of the androdioecious molecular mechanism in O. fragrans.
Collapse
|
3
|
Comprehensive Identification and Profiling of miRNAs Involved in Terpenoid Synthesis of Gleditsia sinensis Lam. FORESTS 2022. [DOI: 10.3390/f13010108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gleditsia sinensis Lam. is a tree with worldwide distribution and important economic and medicinal values; its pods contain terpenoids including gleditsioside, thiamine, and brassinosteroids. However, thus far, there are few studies on the terpenoid regulation of G. sinensis at the molecular level. microRNA (miRNA) is a class of small RNAs with conserved and crucial roles in the regulation of diverse biological processes during plant growth and development. To identify the miRNAs of G. sinensis and evaluate their involvement in terpenoid synthesis, this investigation quantified the content changes in saponins in pods at three developmental stages: May (pod-setting stage), July (elongation stage), and September (browning stage), and then we performed genome-wide miRNA profiles during the three development stages of the G. sinensis pods. A total of 351 conserved miRNAs belonging to 216 families were identified, among which 36 conserved miRNAs exist specifically in legumes. Through target analysis, 708 unigenes were predicted to be candidate targets of 37 differentially expressed miRNAs. The targets of miR838-3p and miR2093-5p were involved in the derived branches of monoterpenes and gleditsioside, in brassinosteroid biosynthesis (BRB), and in indole alkaloid biosynthesis (IAB). Intriguingly, the targets of miR829-3p.1 were predicted to take part in thiamine biosynthesis, and the targets of miR4414b and miR5037a were involved in the main process of cytokinin synthesis. The corresponding targets participated in BRB, IAB, and terpenoid backbone biosynthesis, which were enriched significantly, suggesting that miR2093-5p, miR4414b, miR5037a, miR829-3p.1, and miR838-3p play indispensable roles in the regulation of triterpenoid saponin and monoterpenoid biosynthesis. To date, this is the first report of miRNA identification in G. sinensis and miRNA expression profiles at different developmental stages of G. sinensis pods, which provides a basis for further uncovering the molecular regulation of terpenoid synthesis in G. sinensis and new insights into the role of miRNAs in legumes.
Collapse
|
4
|
Wang L, Ruan C, Bao A, Li H. Small RNA profiling for identification of microRNAs involved in regulation of seed development and lipid biosynthesis in yellowhorn. BMC PLANT BIOLOGY 2021; 21:464. [PMID: 34641783 PMCID: PMC8513341 DOI: 10.1186/s12870-021-03239-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 09/29/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Yellowhorn (Xanthoceras sorbifolium), an endemic woody oil-bearing tree, has become economically important and is widely cultivated in northern China for bioactive oil production. However, the regulatory mechanisms of seed development and lipid biosynthesis affecting oil production in yellowhorn are still elusive. MicroRNAs (miRNAs) play crucial roles in diverse aspects of biological and metabolic processes in seeds, especially in seed development and lipid metabolism. It is still unknown how the miRNAs regulate the seed development and lipid biosynthesis in yellowhorn. RESULTS Here, based on investigations of differences in the seed growth tendency and embryo oil content between high-oil-content and low-oil-content lines, we constructed small RNA libraries from yellowhorn embryos at four seed development stages of the two lines and then profiled small RNA expression using high-throughput sequencing. A total of 249 known miRNAs from 46 families and 88 novel miRNAs were identified. Furthermore, by pairwise comparisons among the four seed development stages in each line, we found that 64 miRNAs (53 known and 11 novel miRNAs) were differentially expressed in the two lines. Across the two lines, 15, 11, 10, and 7 differentially expressed miRNAs were detected at 40, 54, 68, and 81 days after anthesis, respectively. Bioinformatic analysis was used to predict a total of 2654 target genes for 141 differentially expressed miRNAs (120 known and 21 novel miRNAs). Most of these genes were involved in the fatty acid biosynthetic process, regulation of transcription, nucleus, and response to auxin. Using quantitative real-time PCR and an integrated analysis of miRNA and mRNA expression, miRNA-target regulatory modules that may be involved in yellowhorn seed size, weight, and lipid biosynthesis were identified, such as miR172b-ARF2 (auxin response factor 2), miR7760-p3_1-AGL61 (AGAMOUS-LIKE 61), miR319p_1-FAD2-2 (omega-6 fatty acid desaturase 2-2), miR5647-p3_1-DGAT1 (diacylglycerol acyltransferase 1), and miR7760-p5_1-MED15A (Mediator subunit 15a). CONCLUSIONS This study provides new insights into the important regulatory roles of miRNAs in the seed development and lipid biosynthesis in yellowhorn. Our results will be valuable for dissecting the post-transcriptional and transcriptional regulation of seed development and lipid biosynthesis, as well as improving yellowhorn in northern China.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, College of Marine Life Science, Ocean University of China, Qingdao, 266100, China
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China.
| | - Aomin Bao
- Institute of Economic Forest, Tongliao Academy of Forestry Science and Technology, Tongliao, 028000, China
| | - He Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| |
Collapse
|