1
|
Mullett MS, Harris AR, Scanu B, Van Poucke K, LeBoldus J, Stamm E, Bourret TB, Christova PK, Oliva J, Redondo MA, Talgø V, Corcobado T, Milenković I, Jung MH, Webber J, Heungens K, Jung T. Phylogeography, origin and population structure of the self-fertile emerging plant pathogen Phytophthora pseudosyringae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13450. [PMID: 38590129 PMCID: PMC11002350 DOI: 10.1111/mpp.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Phytophthora pseudosyringae is a self-fertile pathogen of woody plants, particularly associated with tree species from the genera Fagus, Notholithocarpus, Nothofagus and Quercus, which is found across Europe and in parts of North America and Chile. It can behave as a soil pathogen infecting roots and the stem collar region, as well as an aerial pathogen infecting leaves, twigs and stem barks, causing particular damage in the United Kingdom and western North America. The population structure, migration and potential outcrossing of a worldwide collection of isolates were investigated using genotyping-by-sequencing. Coalescent-based migration analysis revealed that the North American population originated from Europe. Historical gene flow has occurred between the continents in both directions to some extent, yet contemporary migration is overwhelmingly from Europe to North America. Two broad population clusters dominate the global population of the pathogen, with a subgroup derived from one of the main clusters found only in western North America. Index of association and network analyses indicate an influential level of outcrossing has occurred in this preferentially inbreeding, homothallic oomycete. Outcrossing between the two main population clusters has created distinct subgroups of admixed individuals that are, however, less common than the main population clusters. Differences in life history traits between the two main population clusters should be further investigated together with virulence and host range tests to evaluate the risk each population poses to natural environments worldwide.
Collapse
Affiliation(s)
- Martin S. Mullett
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | | | - Bruno Scanu
- Department of Agricultural SciencesUniversity of SassariSassariItaly
| | - Kris Van Poucke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences UnitMerelbekeBelgium
| | - Jared LeBoldus
- Department of Botany and Plant PathologyOregon State UniversityCorvallisOregonUSA
- Department of Forest Engineering, Resources, and ManagementOregon State UniversityCorvallisOregonUSA
| | - Elizabeth Stamm
- Department of Botany and Plant PathologyOregon State UniversityCorvallisOregonUSA
| | - Tyler B. Bourret
- USDA‐ARS Mycology and Nematology Genetic Diversity and Biology LaboratoryBeltsvilleMarylandUSA
- Department of Plant PathologyUC DavisDavisCaliforniaUSA
| | | | - Jonás Oliva
- Department of Agricultural and Forest Sciences and EngineeringUniversity of LleidaLleidaSpain
- Joint Research Unit CTFC–AGROTECNIO–CERCALleidaSpain
| | - Miguel A. Redondo
- National Bioinformatics Infrastructure Sweden, Science for Life LaboratorySweden
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Venche Talgø
- Division of Biotechnology and Plant HealthNorwegian Institute of Bioeconomy Research (NIBIO)ÅsNorway
| | - Tamara Corcobado
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | - Ivan Milenković
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | - Marília Horta Jung
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | | | - Kurt Heungens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences UnitMerelbekeBelgium
| | - Thomas Jung
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| |
Collapse
|
2
|
Corcobado T, Cech TL, Daxer A, Ďatková H, Janoušek J, Patra S, Jahn D, Hüttler C, Milenković I, Tomšovský M, Jung MH, Jung T. Phytophthora, Nothophytophthora and Halophytophthora diversity in rivers, streams and riparian alder ecosystems of Central Europe. Mycol Prog 2023; 22:50. [PMID: 37323627 PMCID: PMC10264269 DOI: 10.1007/s11557-023-01898-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Waterways are ideal pathways for Phytophthora dispersal and potential introduction to terrestrial ecosystems. While many Phytophthora species from phylogenetic clades 6, 9 and 10 are predominant oomycetes in watercourses due to their adaptation to a lifestyle as saprotrophs and opportunistic pathogens of riparian plants, species from clades 2, 7 and 8 are predominantly soil- or airborne using aquatic habitats as temporal niches for spreading and invading terrestrial sites along the watercourses. In contrast to forest ecosystems, knowledge of Phytophthora diversity in watercourses in Central Europe is limited. Between 2014 and 2019 extensive surveys of streams and rivers were undertaken across Austria, in South Moravia, Czech Republic and Žilina province, Slovakia to unveil the diversity and distribution of Phytophthora and related oomycetes. In addition, in Austria riparian forests of black alder (Alnus glutinosa) and grey alder (A. incana) in lowlands and in the Alps were examined. A variety of Phytophthora species from clades 2, 6, 7, 8, 9 and 10 were isolated, with clade 6 species showing the widest distribution and abundance. Furthermore, interspecific clade 6 hybrids and other oomycetes such as Halophytophthora fluviatilis and undescribed Nothophytophthora spp. were also obtained. In riparian alders, symptoms of Phytophthora infections were associated with species from the P. × alni complex and P. plurivora. Phytophthora plurivora was most common in alder stands whereas P. uniformis was the oomycete species occurring at the highest altitude in alpine riparian areas. Supplementary Information The online version contains supplementary material available at 10.1007/s11557-023-01898-1.
Collapse
Affiliation(s)
- Tamara Corcobado
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
- Natural Hazards and Landscape, Unit of Phytopathology, Department of Forest Protection, Federal Research and Training Centre for Forests, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Thomas L. Cech
- Natural Hazards and Landscape, Unit of Phytopathology, Department of Forest Protection, Federal Research and Training Centre for Forests, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Andreas Daxer
- Natural Hazards and Landscape, Unit of Phytopathology, Department of Forest Protection, Federal Research and Training Centre for Forests, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Henrieta Ďatková
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Josef Janoušek
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Sneha Patra
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
- Global Change Research Institute of the Czech Academy of Sciences, Belidla 986/4a, 603 00 Brno, Czech Republic
| | - Daniella Jahn
- Natural Hazards and Landscape, Unit of Phytopathology, Department of Forest Protection, Federal Research and Training Centre for Forests, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Christine Hüttler
- Natural Hazards and Landscape, Unit of Phytopathology, Department of Forest Protection, Federal Research and Training Centre for Forests, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Ivan Milenković
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Michal Tomšovský
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Marília Horta Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
- Phytophthora Research and Consultancy, Am Rain 9, 83131 Nußdorf, Germany
| | - Thomas Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
- Phytophthora Research and Consultancy, Am Rain 9, 83131 Nußdorf, Germany
| |
Collapse
|
3
|
Hybrid vigor in Eucalyptus increases resistance against Phytophthora root rot. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
AbstractEucalyptus nitens is a cold-tolerant eucalypt that is native to Eastern Australia. Pure E. nitens as well as its hybrids, such as Eucalyptus grandis × Eucalyptus nitens, is propagated commercially in various regions of the southern hemisphere, including South Africa. In a plantation environment, E. nitens is susceptible to a variety of native and invasive pathogens, including Phytophthora alticola and P. cinnamomi. Recently, there have been increasing reports of root and collar rot in E. nitens in South Africa. The severity of this disease was substantially lower among interspecific hybrids of E. grandis × E. nitens compared to purebred E. nitens. In South Africa, the susceptibility of commercially propagated provenances of pure E. nitens and varieties of hybrid E. grandis × E. nitens to Phytophthora species is unknown. Therefore, we conducted greenhouse trials to evaluate the pathogenicity of P. alticola and P. cinnamomi to two families of pure E. nitens, one self-fertilized and the other outcrossed, as well as a single clonal variety of the most widely planted interspecific hybrid, E. grandis × E. nitens. The outcomes from these trials revealed that both self-fertilized and outcrossed families of E. nitens were highly susceptible to the tested Phytophthora species. The severity of root rot was greatest among plants inoculated with P. cinnamomi. The tested interspecific hybrid was tolerant to both Phytophthora species and developed new lateral and fine roots to offset the effects of root rot.
Collapse
|
4
|
Aloi F, Parlascino R, Conti Taguali S, Faedda R, Pane A, Cacciola SO. Phytophthora pseudocryptogea, P. nicotianae and P. multivora Associated to Cycas revoluta: First Report Worldwide. PLANTS (BASEL, SWITZERLAND) 2023; 12:1197. [PMID: 36904056 PMCID: PMC10005564 DOI: 10.3390/plants12051197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A dieback was observed on three-year-old pot-grown plants of Cycas revoluta in Sicily (Italy). Symptoms, including stunting, yellowing and blight of the leaf crown, root rot and internal browning and decay of the basal stem, closely resembled the Phytophthora root and crown rot syndrome, common in other ornamentals. Isolations from rotten stem and roots, using a selective medium, and from rhizosphere soil of symptomatic plants, using leaf baiting, yielded three Phytophthora species, P. multivora, P. nicotianae and P. pseudocryptogea, were obtained. Isolates were identified by both morphological characters and DNA barcoding analysis, using three gene regions: ITS, β-tub and COI. Phytophthora pseudocryptogea was the sole species isolated directly from the stem and roots. The pathogenicity of the isolates of the three Phytophthora species was tested on one-year-old potted plants of C. revoluta, using both stem inoculation by wounding, and root inoculation through infested soil. Phytophthora pseudocryptogea was the most virulent and, like P. nicotianae, reproduced all the symptoms of natural infections, while P. multivora was the least virulent and induced solely very mild symptoms. Phytophthora pseudocryptogea was identified as the causal agent of the decline of C. revoluta, as it was re-isolated from both the roots and stems of artificially infected symptomatic plants, thus fulfilling Koch's postulates.
Collapse
|
5
|
Germplasm Resources of Oaks ( Quercus L.) in China: Utilization and Prospects. BIOLOGY 2022; 12:biology12010076. [PMID: 36671768 PMCID: PMC9855944 DOI: 10.3390/biology12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Oaks exhibit unique biological characteristics and high adaptability to complex climatic and soil conditions. They are widely distributed across various regions, spanning 40 degrees latitude and 75 degrees longitude. The total area of oak forest in China is 16.72 million hm2. There are 60 lineages of Quercus in China, including 49 species, seven varieties, and four subgenera. Archaeological data indicate that oaks were already widely distributed in ancient times, and they are dominant trees in vast regions of China's forests. In addition, the acorn was an important food for ancestral humans, and it has accompanied human civilization since the early Paleolithic. Diverse oak species are widely distributed and have great functional value, such as for greening, carbon sequestration, industrial and medicinal uses, and insect rearing. Long-term deforestation, fire, diseases, and pests have led to a continuous decline in oak resources. This study discusses the Quercus species and their distribution in China, ecological adaptation, and the threats facing the propagation and growth of oaks in a changing world. This will give us a better understanding of Quercus resources, and provide guidance on how to protect and better utilize germplasm resources in China. The breeding of new varieties, pest control, and chemical and molecular research also need to be strengthened in future studies.
Collapse
|
6
|
Jung T, Milenković I, Corcobado T, Májek T, Janoušek J, Kudláček1 T, Tomšovský M, Nagy Z, Durán A, Tarigan M, Sanfuentes von Stowasser E, Singh R, Ferreira M, Webber J, Scanu B, Chi N, Thu P, Junaid M, Rosmana A, Baharuddin B, Kuswinanti T, Nasri N, Kageyama K, Hieno A, Masuya H, Uematsu S, Oliva J, Redondo M, Maia C, Matsiakh I, Kramarets V, O’Hanlon R, Tomić Ž, Brasier C, Horta Jung M. Extensive morphological and behavioural diversity among fourteen new and seven described species in Phytophthora Clade 10 and its evolutionary implications. PERSOONIA 2022; 49:1-57. [PMID: 38234379 PMCID: PMC10792230 DOI: 10.3767/persoonia.2022.49.01] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 01/19/2024]
Abstract
During extensive surveys of global Phytophthora diversity 14 new species detected in natural ecosystems in Chile, Indonesia, USA (Louisiana), Sweden, Ukraine and Vietnam were assigned to Phytophthora major Clade 10 based on a multigene phylogeny of nine nuclear and three mitochondrial gene regions. Clade 10 now comprises three subclades. Subclades 10a and 10b contain species with nonpapillate sporangia, a range of breeding systems and a mainly soil- and waterborne lifestyle. These include the previously described P. afrocarpa, P. gallica and P. intercalaris and eight of the new species: P. ludoviciana, P. procera, P. pseudogallica, P. scandinavica, P. subarctica, P. tenuimura, P. tonkinensis and P. ukrainensis. In contrast, all species in Subclade 10c have papillate sporangia and are self-fertile (or homothallic) with an aerial lifestyle including the known P. boehmeriae, P. gondwanensis, P. kernoviae and P. morindae and the new species P. celebensis, P. chilensis, P. javanensis, P. multiglobulosa, P. pseudochilensis and P. pseudokernoviae. All new Phytophthora species differed from each other and from related species by their unique combinations of morphological characters, breeding systems, cardinal temperatures and growth rates. The biogeography and evolutionary history of Clade 10 are discussed. We propose that the three subclades originated via the early divergence of pre-Gondwanan ancestors > 175 Mya into water- and soilborne and aerially dispersed lineages and subsequently underwent multiple allopatric and sympatric radiations during their global spread. Citation: Jung T, Milenković I, Corcobado T, et al. 2022. Extensive morphological and behavioural diversity among fourteen new and seven described species in Phytophthora Clade 10 and its evolutionary implications. Persoonia 49: 1-57. https://doi.org/10.3767/persoonia.2022.49.01.
Collapse
Affiliation(s)
- T. Jung
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
- Phytophthora Research and Consultancy, 83131 Nussdorf, Germany
| | - I. Milenković
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
- University of Belgrade, Faculty of Forestry, 11030 Belgrade, Serbia
| | - T. Corcobado
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - T. Májek
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - J. Janoušek
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - T. Kudláček1
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - M. Tomšovský
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - Z.Á Nagy
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
| | - A. Durán
- University of Belgrade, Faculty of Forestry, 11030 Belgrade, Serbia
- Research and Development, Asia Pacific Resources International Limited (APRIL), 28300 Pangkalan Kerinci, Riau, Indonesia
| | - M. Tarigan
- Research and Development, Asia Pacific Resources International Limited (APRIL), 28300 Pangkalan Kerinci, Riau, Indonesia
| | - E. Sanfuentes von Stowasser
- Laboratorio de Patología Forestal, Facultad Ciencias Forestales y Centro de Biotecnología, Universidad de Concepción, 4030000 Concepción, Chile
| | - R. Singh
- Plant Diagnostic Center, Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - M. Ferreira
- Plant Diagnostic Center, Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - J.F. Webber
- Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100 Sassari, Italy
| | - N.M. Chi
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 10000 Hanoi, Vietnam
| | - P.Q. Thu
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 10000 Hanoi, Vietnam
| | - M. Junaid
- Department of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - A. Rosmana
- Department of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - B. Baharuddin
- Department of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - T. Kuswinanti
- Department of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - N. Nasri
- Department of Forest Conservation, Faculty of Forestry, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia
| | - K. Kageyama
- River Basin Research Center, Gifu University, Gifu, 501-1193, Japan
| | - A. Hieno
- River Basin Research Center, Gifu University, Gifu, 501-1193, Japan
| | - H. Masuya
- Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, 305-8687, Japan
| | - S. Uematsu
- Laboratory of Molecular and Cellular Biology, Dept. of Bioregulation and Bio-interaction, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - J. Oliva
- Department of Crop and Forest Sciences, University of Lleida, Lleida 25198, Spain
| | - M. Redondo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - C. Maia
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
| | - I. Matsiakh
- Ukrainian National Forestry University, Pryrodna st.19, 79057, Lviv, Ukraine
| | - V. Kramarets
- Ukrainian National Forestry University, Pryrodna st.19, 79057, Lviv, Ukraine
| | - R. O’Hanlon
- Department of Agriculture, Food and the Marine, Dublin 2, D02 WK12, Ireland
| | - Ž. Tomić
- Center for Plant Protection, Croatian Agency for Agriculture and Food, 10000 Zagreb, Croatia
| | - C.M. Brasier
- Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK
| | - M. Horta Jung
- Mendel University in Brno, Faculty of Forestry and Wood Technology, Department of Forest Protection and Wildlife Management, Phytophthora Research Centre, 613 00 Brno, Czech Republic
- Phytophthora Research and Consultancy, 83131 Nussdorf, Germany
| |
Collapse
|
7
|
Dorado FJ, Corcobado T, Brandano A, Abbas Y, Alcaide F, Janousek J, Jung T, Scanu B, Solla A. First Report of Dieback of Quercus suber Trees Associated with Phytophthora quercina in Morocco. PLANT DISEASE 2022; 107:1246. [PMID: 36167516 DOI: 10.1094/pdis-08-22-1795-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cork oak (Quercus suber L.) is an evergreen tree native to SW Europe and NW Africa. It covers 2·106 ha in the western Mediterranean basin, forms heterogeneous forest ecosystems and represents an important source of income derived from cork production. While in Iberia, Italy, Tunisia and Algeria, drought and several endemic pathogens have been associated with cork oak decline (Moricca et al. 2016; Smahi et al. 2017), in Morocco there is no evidence, apart from overgrazing and human intervention (Fennane and Rejdali 2015), of a pathogen associated with oak decline. In December 2019, extensive dieback and mortality of 60-year-old cork oak trees were observed in a natural stand of ca 150 ha located 5 km east from Touazithe, in Maâmora forest, Morocco (34°13'38''N, 6°14'51''W - 87 m a.s.l.). Two years before, Q. suber seedlings from a local nursery were planted to increase tree density. Symptoms in trees and planted seedlings included chlorosis, reddish-brown discoloration of the whole crown and dieback starting in the upper crown. Root rot and lack of fine roots were observed. Tree mortality was estimated at ca 30%, and disease incidences of trees and seedlings were 45 and 70%, respectively. A Phytophthora species was consistently isolated from the rhizosphere of 3 symptomatic trees randomly selected at the site using leaves as bait (Jung et al. 1996). On carrot agar Phytophthora colonies were uniform and cottonwool-like. Sporangia were typically terminal, with ovoid, and obpyriform shape, mostly papillate, measuring 30.7 ± 4.7 µm length and 22.7 ± 4.1 µm wide. Oogonia were produced in single culture, and they were globose to subglobose, elongated to ellipsoid, 32.1 ± 2.9 µm in diameter and 46.1 ± 4.8 µm in length. Oospores were usually spherical, thick-walled, and measured 28.1 ± 2.4 µm. Antheridia were paragynous, mostly spherical, measuring 12.2 ± 1.4 µm. Isolates had minimum and maximum temperatures of 5 °C and 30 °C, respectively, and a growth optimum at 20 °C. Apart from the small size of sporangia, features were typical of Phytophthora quercina Jung. The identity of a representative strain (TJ1500) was corroborated by sequencing the ITS and mitochondrial cox1 gene regions, and BLAST search in GenBank showed 100% homology with sequences of the ex-type culture of P. quercina (KF358229 and KF358241 accessions, respectively). Both sequences of the representative isolate were submitted to GenBank (accessions OP086243 and OP290549). The strain TJ1500 is currently stored within the culture collections of the Mendel University in Brno and the University of Sassari. Its pathogenicity was verified and compared with a P. cinnamomi strain in a soil infestation test with one-year-old cork oak seedlings (Corcobado et al. 2017). Five months after inoculation, the symptoms described were observed in the seedlings, and fine root weight of plants inoculated with the TJ1500 strain and P. cinnamomi was reduced by 19 and 42%, respectively, in relation to non-inoculated controls. The pathogen was re-isolated from the necrotic roots, thus fulfilling Koch's postulates. So far, P. quercina has been reported associated with chronic mortality of cork oak in new plantations in Spain (Martín-García et al. 2015; Jung et al. 2016) and natural forests in Italy (Seddaiu et al. 2020). To our knowledge this is the first report of P. quercina in Morocco. Givenat Morocco is an important cork producing country, our finding warns about the risk this pathogen poses to Q. suber and other North African oaks.
Collapse
Affiliation(s)
| | - Tamara Corcobado
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic;
| | - Andrea Brandano
- University of Sassari, Plant protection, Sassari, Sardinia, Italy;
| | - Younes Abbas
- Sultan Moulay Slimane University Polydisciplinary Faculty of Beni Mellal, Beni Mellal, Beni Mellal-Khenifra, Morocco;
| | | | - Josef Janousek
- Mendel University in Brno, Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Brno, Czech Republic;
| | - Thomas Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic;
| | - Bruno Scanu
- University of Sassari, Plant protection, via De Nicola - 9, Sassari, Sardinia, Italy, 07100;
| | - Alejandro Solla
- Universidad de Extremadura, Faculty of Forestry, Avenida Virgen del Puerto 2, Plasencia, Spain, 10600;
| |
Collapse
|
8
|
Phytophthora × cambivora as a Major Factor Inciting the Decline of European Beech in a Stand within the Southernmost Limit of Its Natural Range in Europe. J Fungi (Basel) 2022; 8:jof8090973. [PMID: 36135698 PMCID: PMC9501170 DOI: 10.3390/jof8090973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
The objective of this study was to investigate the role of the oomycete Phytophthora× cambivora in the decline affecting European beech (Fagus sylvatica) in the Nebrodi Regional Park (Sicily, southern Italy). In a survey of a beech forest stand in the heart of the park, Phytophthora× cambivora was the sole Phytophthora species recovered from the rhizosphere soil and fine roots of trees. Both A1 and A2 mating type isolates were found. Direct isolation from the stem bark of trees showing severe decline symptoms and bleeding stem cankers yielded exclusively P. gonapodyides, usually considered as an opportunistic pathogen. The mean inoculum density of P.× cambivora in the rhizosphere soil, as determined using the soil dilution plating method and expressed in terms of colony forming units (cfus) per gm of soil, the isolation frequency using leaf baiting, and the percentage of infected fibrous roots from 20 randomly selected beech trees with severe decline symptoms (50 to 100 foliage transparency classes) were 31.7 cfus, 80%, and 48.6%, respectively. These were significantly higher than the corresponding mean values of 20 asymptomatic or slightly declining trees, suggesting P.× cambivora is a major factor responsible for the decline in the surveyed stand.
Collapse
|
9
|
Saiz-Fernández I, Đorđević B, Kerchev P, Černý M, Jung T, Berka M, Fu CH, Horta Jung M, Brzobohatý B. Differences in the Proteomic and Metabolomic Response of Quercus suber and Quercus variabilis During the Early Stages of Phytophthora cinnamomi Infection. Front Microbiol 2022; 13:894533. [PMID: 35770156 PMCID: PMC9234522 DOI: 10.3389/fmicb.2022.894533] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/11/2022] [Indexed: 12/23/2022] Open
Abstract
Phytophthora cinnamomi Rands is a cosmopolite pathogen of woody plants which during the last couple of centuries has spread all over the world from its center of origin in Southeast Asia. In contrast to Chinese cork oak (Quercus variabilis Blume) forests native to Asia, which are generally healthy despite the presence of the pathogen, the populations of Cork oaks (Quercus suber L.) in Europe have been severely decimated by P. cinnamomi. The present study aims at identifying the differences in the early proteomic and metabolomic response of these two tree species that lead to their differences in susceptibility to P. cinnamomi. By using micropropagated clonal plants, we tried to minimize the plant-to-plant differences in the defense response that is maximized by the high intraspecific genetic variability inherent to the Quercus genus. The evolution on the content of Phytophthora proteins in the roots during the first 36 h after inoculation suggests a slower infection process in Q. variabilis plants. These plants displayed a significant decrease in sugars in the roots, together with a downregulation of proteins related to carbon metabolism. In the leaves, the biggest changes in proteomic profiling were observed 16 h after inoculation, and included increased abundance of peroxidases, superoxide dismutases and glutathione S-transferases in Q. variabilis plants, which probably contributed to decrease its susceptibility to P. cinnamomi.
Collapse
Affiliation(s)
- Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Biljana Đorđević
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Thomas Jung
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Chuen-Hsu Fu
- Forest Protection Division, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Marília Horta Jung
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
10
|
Protective Effects of Filtrates and Extracts from Fungal Endophytes on Phytophthora cinnamomi in Lupinus luteus. PLANTS 2022; 11:plants11111455. [PMID: 35684227 PMCID: PMC9182999 DOI: 10.3390/plants11111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Fungal endophytes have been found to protect their hosts against multiple fungal pathogens. Frequently, the secondary metabolites produced by the endophyte are responsible for antifungal activity. To develop new bio-products that are more environmentally friendly than synthetic pesticides against Phytophthora cinnamomi, a serious pathogen of many plant species, the antifungal activity of filtrates or extracts from four endophytes was evaluated in different in vitro tests and in plants of Lupinus luteus. In the dual culture assays, the filtrate of one of the endophytes (Drechslera biseptata) completely inhibited the mycelial growth of the pathogen. Moreover, it showed a very low minimal inhibitory concentration (MIC). Epicoccum nigrum, an endophyte that also showed high inhibitory activity and a low MIC against P. cinnamomi in those two experiments, provided a clear growth promotion effect when the extracts were applied to L. luteus seedlings. The extract of Fusarium avenaceum also manifested such a promotion effect and was the most effective in reducing the disease severity caused by the pathogen in lupine plants (73% reduction). Results demonstrated the inhibitory activity of the filtrates or extracts of these endophytes against P. cinnamomi. A better insight into the mechanisms involved may be gained by isolating and identifying the metabolites conferring this inhibitory effect against this oomycete pathogen.
Collapse
|
11
|
Venice F, Vizzini A, Frascella A, Emiliani G, Danti R, Della Rocca G, Mello A. Localized reshaping of the fungal community in response to a forest fungal pathogen reveals resilience of Mediterranean mycobiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149582. [PMID: 34426333 DOI: 10.1016/j.scitotenv.2021.149582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/16/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Mediterranean forests are facing the impact of pests such as the soilborne Phytophthora cambivora, the causal agent of Ink disease, and this impact is made more severe by global changes. The status and resilience of the soil microbial ecosystem in areas with such a disturbance are little known; however, the assessment of the microbial community is fundamental to preserve the ecosystem functioning under emerging challenges. We profile soil fungal communities in a chestnut stand affected by ink disease in Italy using metabarcoding, and couple high-throughput sequencing with physico-chemical parameters and dendrometric measurements. Since the site also includes an area where the disease symptoms seem to be suppressed, we performed several analyses to search for determinants that may contribute to such difference. We demonstrate that neither pathogen presence nor trees decline associate with the reduction of the residing community diversity and functions, but rather with microbial network reshaping through substitutions and new interactions, despite a conservation of core taxa. We predict interactions between taxa and parameters such as soil pH and C/N ratio, and suggest that disease incidence may also relate with disappearance of pathogen antagonists, including ericoid- and ectomycorrhizal (ECM) fungi. By combining metabarcoding and field studies, we infer the resilient status of the fungal community towards a biotic stressor, and provide a benchmark for the study of other threatened ecosystems.
Collapse
Affiliation(s)
- Francesco Venice
- Institute for Sustainable Plant Protection (IPSP)-SS Turin-National Research Council (CNR), Viale Mattioli 25, 10125 Turin, Italy
| | - Alfredo Vizzini
- Institute for Sustainable Plant Protection (IPSP)-SS Turin-National Research Council (CNR), Viale Mattioli 25, 10125 Turin, Italy; Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125 Turin, Italy
| | - Arcangela Frascella
- Institute for Sustainable Plant Protection (IPSP)-National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto F.no (FI), Italy
| | - Giovanni Emiliani
- Institute for Sustainable Plant Protection (IPSP)-National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto F.no (FI), Italy
| | - Roberto Danti
- Institute for Sustainable Plant Protection (IPSP)-National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto F.no (FI), Italy
| | - Gianni Della Rocca
- Institute for Sustainable Plant Protection (IPSP)-National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto F.no (FI), Italy
| | - Antonietta Mello
- Institute for Sustainable Plant Protection (IPSP)-SS Turin-National Research Council (CNR), Viale Mattioli 25, 10125 Turin, Italy.
| |
Collapse
|