1
|
Ayyildiz E. Interval valued intuitionistic fuzzy analytic hierarchy process-based green supply chain resilience evaluation methodology in post COVID-19 era. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42476-42494. [PMID: 34669128 PMCID: PMC8526357 DOI: 10.1007/s11356-021-16972-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/06/2021] [Indexed: 04/13/2023]
Abstract
Supply chain organizations should calmly and cautiously take the most accurate and sustainable decisions quickly and put them into practice. It is obvious that traditional time series-based demand and supply planning approaches are insufficient to meet current business needs due to factors such as sharp changes in market and commercial dynamics, pandemics, and natural disasters on the management of green supply chains, especially these days. In the near future, there will be a need for more resilient supply chains with a flexible business models that are not affected by sudden changes and that can make sustainable decisions dynamically. Additionally, all stakeholders must act with a green supply chain approach to conduct production and service activities in a way that causes the least damage to nature. Companies must build more resilient supply chains by considering environmental sensitivities to compete in the market and ensure their continuity. In this context, the green supply chains should be evaluated according to their resilience. For this purpose, Supply Chain Operations Reference (SCOR) model is extended with novel performance attributes to evaluate resilience of green supply chains in this study. The SCOR-embedded novel green supply chain resilience evaluation model is structured as a three-level performance attribute hierarchical structure. Then, the model is handled as a multi-criteria decision-making problem to determine importance of the performance attributes. Best Worst Method integrated Interval Valued Intuitionistic Fuzzy Analytic Hierarchy Process is used to determine the importance of performance attributes. Most important performance attributes are determined in each level of hierarchy. According to results, organizational factors play a key role to build more resilient supply chains. Especially, integrated systems are required for supply chain resilience.
Collapse
Affiliation(s)
- Ertugrul Ayyildiz
- Department of Industrial Engineering, Karadeniz Technical University, Merkez Campus, 61080, Trabzon, Turkey.
- Department of Industrial Engineering, Yildiz Technical University, Yildiz Campus, 34349, İstanbul, Turkey.
| |
Collapse
|
2
|
Design a Mathematical Planning Approach to Optimize the Supply Chain Taking Into Account Uncertainties In Distributors. FOUNDATIONS OF COMPUTING AND DECISION SCIENCES 2022. [DOI: 10.2478/fcds-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
With the globalization of markets and increasing competition in global markets, the attempts of organizations to survive in this market has increased and has resulted in the emergence of the philosophy of Supply Chain Management. There is uncertainty in the reliability of supply chain facilities for reasons such as natural disasters, terrorist attacks, labor errors, and weather conditions. Therefore, when making strategic decisions, the system will continue to operate with minimal damage. Over the course of this study, the uncertainty of supplier layers in the supply chain has been modeled. To meet that aim, the issue of supply chain, including producers, warehouses, suppliers and consumers are considered. To calculate the cost of breakdowns due to the non-functioning of distributors, the scenario-building method has been utilized. Finally, the desired model is solved with Gomez software and the results are presented. The result of the study demonstrate the efficiency of this model in the facility location decision-making in supply chains.
Collapse
|
3
|
Optimizing the Design of a Biomass-to-Biofuel Supply Chain Network Using a Decentralized Processing Approach. ENERGIES 2022. [DOI: 10.3390/en15145001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
When designing biomass-to-biofuel supply chains, the biomass uncertainty, seasonality and geographical dispersion that affect economic viability need to be considered. This work presents a novel methodology that can optimize the design of biofuel supply chains by adopting a decentralized network structure consisting of a mix of fixed and mobile processing facilities. The model considers a variable biomass yield profile and the mobile fast pyrolysis technology. The mixed-integer linear programming model developed identifies the optimal biofuel production and biomass harvesting schedule schemes under the objective of profit maximization. It was applied in the case study of marginal lands in Scotland, which are assumed to be planted with Miscanthus. The trade-offs observed between economies of scale against the transportation costs, the effect of the relocation costs and the contribution of storage capacity were investigated. The results showed that, in most cases, harvesting is most concentrated during the month of the highest biomass yield, provided that storage facilities are available. Storage capacity plays an important role to widen the operational time window of processing facilities since scenarios with restricted or costly storage resulted in facilities of higher capacity operating within a narrower time window, leading to higher investment costs. Relocation costs proved to have a minor share in the total transportation costs.
Collapse
|
4
|
Ranjbari M, Shams Esfandabadi Z, Ferraris A, Quatraro F, Rehan M, Nizami AS, Gupta VK, Lam SS, Aghbashlo M, Tabatabaei M. Biofuel supply chain management in the circular economy transition: An inclusive knowledge map of the field. CHEMOSPHERE 2022; 296:133968. [PMID: 35181422 DOI: 10.1016/j.chemosphere.2022.133968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Investment in biofuels, as sustainable alternatives for fossil fuels, has gained momentum over the last decade due to the global environmental and health concerns regarding fossil fuel consumption. Hence, effective management of biofuel supply chain (BSC) components, including biomass feedstock production, biomass logistics, biofuel production in biorefineries, and biofuel distribution to consumers, is crucial in transitioning towards a low-carbon and circular economy (CE). The present study aims to render an inclusive knowledge map of the BSC-related scientific production. In this vein, a systematic review, supported by a keywords co-occurrence analysis and qualitative content analysis, was carried out on a total of 1,975 peer-reviewed journal articles in the target literature. The analysis revealed four major research hotspots in the BSC literature, namely (1) biomass-to-biofuel supply chain design and planning, (2) environmental impacts of biofuel production, (3) biomass to bioenergy, and (4) techno-economic analysis of biofuel production. Besides, the findings showed that the following subject areas of research in the BSC research community have recently attracted more attention: (i) global warming and climate change mitigation, (ii) development of the third-generation biofuels produced from algal biomass, which has recently gained momentum in the CE debate, and (iii) government incentives, pricing, and subsidizing policies. The provided insights shed light on the understanding of researchers, stakeholders, and policy-makers involved in the sustainable energy sector by outlining the main research backgrounds, developments, and tendencies within the BSC arena. Looking at the provided knowledge map, potential research directions in BSCs towards implementing the CE model, including (i) integrative policy convergence at macro, meso, and micro levels, and (ii) industrializing algae-based biofuel production towards the CE transition, were proposed.
Collapse
Affiliation(s)
- Meisam Ranjbari
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Economics and Statistics "Cognetti de Martiis", University of Turin, Turin, Italy.
| | - Zahra Shams Esfandabadi
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Turin, Italy; Energy Center Lab, Politecnico di Torino, Turin, Italy
| | - Alberto Ferraris
- Department of Management, University of Turin, Turin, Italy; Laboratory for International and Regional Economics, Graduate School of Economics and Management, Ural Federal University, Russia; Faculty of Economics and Business, University of Rijeka, Croatia
| | - Francesco Quatraro
- Department of Economics and Statistics "Cognetti de Martiis", University of Turin, Turin, Italy; BRICK, Collegio Carlo Alberto, Piazza Arbarello 8, 10123, Turin, Italy
| | - Mohammad Rehan
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdul-Sattar Nizami
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia; Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Centre for Safe and Improved Foods, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Su Shiung Lam
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Mortaza Aghbashlo
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Biofuel Research Team (BRTeam), Terengganu, Malaysia.
| |
Collapse
|
5
|
Impact of the COVID-19 Pandemic on Biomass Supply Chains: The Case of the Canadian Wood Pellet Industry. ENERGIES 2022. [DOI: 10.3390/en15093179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The ongoing COVID-19 pandemic has disrupted global economic activity in all sectors, including forest industries. Changes in demand for forest products in North America over the course of the pandemic have affected both primary processors and downstream industries reliant on residues, including wood pellet producers. Wood pellets have become an internationally traded good, mostly as a substitute for coal in electricity generation, with a significant proportion of the global supply coming from Canadian producers. To determine the effect of the COVID-19 pandemic on the Canadian wood pellet industry, economic and market data were evaluated, in parallel with a survey of Canadian manufacturers on their experiences during the first three waves of the pandemic (March 2020 to September 2021). Overall, the impact of the pandemic on the Canadian wood pellet industry was relatively small, as prices, exports, and production remained stable. Survey respondents noted some negative impacts, mostly in the first months of the pandemic, but the quick recovery of lumber production helped to reduce the impact on wood pellet producers and ensured a stable feedstock supply. The pandemic did exacerbate certain pre-existing issues, such as access to transportation services and labour availability, which were still a concern for the industry at the end of the third wave in Canada. These results suggest that the Canadian wood pellet industry was resilient to disruptions caused by the pandemic and was able to manage the negative effects it faced. This is likely because of the integrated nature of the forest sector, the industry’s reliance on long-term supply contracts, and feedstock flexibility, in addition to producers and end-users both being providers of essential services.
Collapse
|
6
|
Social Sustainability of Water and Waste Management Companies in Portugal. SUSTAINABILITY 2021. [DOI: 10.3390/su14010221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Sustainable Development Goals aim at balancing economic, social and environmental development. In this framework, social sustainability is key to tackle current challenges that hinder the maximization of social satisfaction. Yet, for many years, scholars have negleted the social dimension. A possible explanation may be the difficulty to measure social concepts such as well-being and prosperity. Thus, we argue that, to evaluate sectoral performance, the concept of social sustainability should be translated into metrics, by focusing on the indicators that impact on those social concepts. Consequently, time-series data from Quadros do Pessoal, PORDATA and SABI databases for the sector of Water Collection, Treatment and Distribution, Sanitation, Waste Management and Depollution, are consulted to analyze the evolution of those indicators and evaluate corporate performance concerning social sustainability in 2008–2019. In line with previous literature, we use average wages and employment as proxies for social sustainability. However, we introduce a new indicator, the average term for receipts to carry out an analysis from the stakeholders’ perspective. The results suggest that, especially as of 2017, sectoral firms appear to have reagained their momentum concerning social sustainability performance. This study provides the opportunity to uncover average sectoral trends on social sustainability and paves the way for future research exploring firms’ heterogeneity.
Collapse
|