1
|
Song T, Zhou M, Yuan Y, Yu J, Cai H, Li J, Chen Y, Bai Y, Zhou G, Cui G. Chromosome-Scale Reference Genome of Amphicarpaea edgeworthii: A New Resource for Amphicarpic Plants Research and Complex Flowering Pattern. FRONTIERS IN PLANT SCIENCE 2021; 12:770660. [PMID: 34868169 PMCID: PMC8637744 DOI: 10.3389/fpls.2021.770660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Amphicarpaea edgeworthii, an annual twining herb, is a widely distributed species and an attractive model for studying complex flowering types and evolutionary mechanisms of species. Herein, we have generated a high-quality assembly of A. edgeworthii by using a combination of PacBio, 10× Genomics libraries, and Hi-C mapping technologies. The final 11 chromosome-level scaffolds covered 90.61% of the estimated genome (343.78Mb), which is a chromosome-scale assembled genome of an amphicarpic plant. Subsequently, we characterized the genetic diversity and population structure of A. edgeworthii species by resequencing individuals collected from their natural area of distribution. Using transcriptome profiling, we observed that specific phenotypes are regulated by a complex network of light, hormones, and MADS-box gene families. These data are beneficial for the discovery of genes that control major agronomic traits and spur genetic improvement of and functional genetic studies in legumes, as well as supply comparative genetic resources for other amphicarpic plants.
Collapse
Affiliation(s)
- Tingting Song
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Mengyan Zhou
- Novogene Bioinformatics Institute, Beijing, China
| | - Yuying Yuan
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jinqiu Yu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hua Cai
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiawei Li
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yajun Chen
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yan Bai
- Novogene Bioinformatics Institute, Beijing, China
| | - Gang Zhou
- Novogene Bioinformatics Institute, Beijing, China
| | - Guowen Cui
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Zhao W, Zhang LL, Xu ZS, Fu L, Pang HX, Ma YZ, Min DH. Genome-Wide Analysis of MADS-Box Genes in Foxtail Millet ( Setaria italica L.) and Functional Assessment of the Role of SiMADS51 in the Drought Stress Response. FRONTIERS IN PLANT SCIENCE 2021; 12:659474. [PMID: 34262576 PMCID: PMC8273297 DOI: 10.3389/fpls.2021.659474] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 05/26/2023]
Abstract
MADS-box transcription factors play vital roles in multiple biological processes in plants. At present, a comprehensive investigation into the genome-wide identification and classification of MADS-box genes in foxtail millet (Setaria italica L.) has not been reported. In this study, we identified 72 MADS-box genes in the foxtail millet genome and give an overview of the phylogeny, chromosomal location, gene structures, and potential functions of the proteins encoded by these genes. We also found that the expression of 10 MIKC-type MADS-box genes was induced by abiotic stresses (PEG-6000 and NaCl) and exogenous hormones (ABA and GA), which suggests that these genes may play important regulatory roles in response to different stresses. Further studies showed that transgenic Arabidopsis and rice (Oryza sativa L.) plants overexpressing SiMADS51 had reduced drought stress tolerance as revealed by lower survival rates and poorer growth performance under drought stress conditions, which demonstrated that SiMADS51 is a negative regulator of drought stress tolerance in plants. Moreover, expression of some stress-related genes were down-regulated in the SiMADS51-overexpressing plants. The results of our study provide an overall picture of the MADS-box gene family in foxtail millet and establish a foundation for further research on the mechanisms of action of MADS-box proteins with respect to abiotic stresses.
Collapse
Affiliation(s)
- Wan Zhao
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Li-Li Zhang
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Liang Fu
- Xinxiang Academy of Agricultural Sciences of He’nan Province, Xinxiang, China
| | - Hong-Xi Pang
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Dong-Hong Min
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| |
Collapse
|
3
|
Chao J, Huang Z, Yang S, Deng X, Tian W. Genome-wide identification and expression analysis of the phosphatase 2A family in rubber tree (Hevea brasiliensis). PLoS One 2020; 15:e0228219. [PMID: 32023282 PMCID: PMC7001923 DOI: 10.1371/journal.pone.0228219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/09/2020] [Indexed: 01/03/2023] Open
Abstract
The protein phosphatase 2As (PP2As) play a key role in manipulating protein phosphorylation. Although a number of proteins in the latex of laticifers are phosphorylated during latex regeneration in rubber tree, information about the PP2A family is limited. In the present study, 36 members of the HbPP2A family were genome-wide identified. They were clustered into five subgroups: the subgroup HbPP2AA (4), HbPP2AB' (14), HbPP2AB'' (6), HbPP2AB55 (4), and HbPP2AC (8). The members within the same subgroup shared highly conserved gene structures and protein motifs. Most of HbPP2As possessed ethylene- and wounding-responsive cis-acting elements. The transcripts of 29 genes could be detected in latex by using published high-throughput sequencing data. Of the 29 genes, seventeen genes were significantly down-regulated while HbPP2AA1-1 and HbPP2AB55α/Bα-1were up-regulated by tapping. Of the 17 genes, 14 genes were further significantly down-regulated by ethrel application. The down-regulated expression of a large number of HbPP2As may attribute to the enhanced phosphorylation of the proteins in latex from the tapped trees and the trees treated with ethrel application.
Collapse
Affiliation(s)
- Jinquan Chao
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P. R. China
| | - Zhejun Huang
- College of Foresty, Hainan University, Haikou, Hainan, P. R. China
| | - Shuguang Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P. R. China
| | - Xiaomin Deng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P. R. China
| | - Weimin Tian
- Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, P. R. China
- * E-mail:
| |
Collapse
|
4
|
Schilling S, Kennedy A, Pan S, Jermiin LS, Melzer R. Genome-wide analysis of MIKC-type MADS-box genes in wheat: pervasive duplications, functional conservation and putative neofunctionalization. THE NEW PHYTOLOGIST 2020; 225:511-529. [PMID: 31418861 DOI: 10.1111/nph.16122] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/06/2019] [Indexed: 05/21/2023]
Abstract
Wheat (Triticum aestivum) is one of the most important crops worldwide. Given a growing global population coupled with increasingly challenging cultivation conditions, facilitating wheat breeding by fine-tuning important traits is of great importance. MADS-box genes are prime candidates for this, as they are involved in virtually all aspects of plant development. Here, we present a detailed overview of phylogeny and expression of 201 wheat MIKC-type MADS-box genes. Homoeolog retention is significantly above the average genome-wide retention rate for wheat genes, indicating that many MIKC-type homoeologs are functionally important and not redundant. Gene expression is generally in agreement with the expected subfamily-specific expression pattern, indicating broad conservation of function of MIKC-type genes during wheat evolution. We also found extensive expansion of some MIKC-type subfamilies, especially those potentially involved in adaptation to different environmental conditions like flowering time genes. Duplications are especially prominent in distal telomeric regions. A number of MIKC-type genes show novel expression patterns and respond, for example, to biotic stress, pointing towards neofunctionalization. We speculate that conserved, duplicated and neofunctionalized MIKC-type genes may have played an important role in the adaptation of wheat to a diversity of conditions, hence contributing to the importance of wheat as a global staple food.
Collapse
Affiliation(s)
- Susanne Schilling
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Alice Kennedy
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Sirui Pan
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Lars S Jermiin
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Rainer Melzer
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Research in Forest Biology in the Era of Climate Change and Rapid Urbanization. FORESTS 2019. [DOI: 10.3390/f11010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Green plants provide the foundation for the structure, function, and interactions among organisms in both tropical and temperate zones. To date, many investigations have revealed patterns and mechanisms that generate plant diversity at various scales and from diverse ecological perspectives. However, in the era of climate change, anthropogenic disturbance, and rapid urbanization, new insights are needed to understand how plant species in these forest habitats are changing and adapting. Here, we recognize four themes that link studies from Asia and Europe presented in this Special Issue: (1) genetic analyses of diverse plant species; (2) above- and below-ground forest biodiversity; (3) trait expression and biological mechanisms; and (4) interactions of woody plants within a changing environment. These investigations enlarge our understanding of the origins of diversity, trait variation and heritability, and plant–environment interactions from diverse perspectives.
Collapse
|