1
|
Ao F, Wu J, Qiu R, Zhao H, Li L, Zong X. Preliminary research on the flavor substance and antioxidant capacity of beers produced with baking Qingke. Food Chem X 2024; 22:101394. [PMID: 38721384 PMCID: PMC11076653 DOI: 10.1016/j.fochx.2024.101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 07/02/2024] Open
Abstract
The addition of baked Qingke improves the flavor profile of beer. In this study, beer was brewed using Qingke baked at various temperatures. The beer produced with Qingke baked at 180 °C achieved the highest sensory score (40/50), an alcohol content of 6.92% (v/v), a total phenolic content of 446.42 mg/L, melanoidin concentration of 98.22 g/L, a color value of 10.88 EBC, and exhibited satisfactory antioxidant activity. Analysis of volatile compounds using HS-SPME-GC-MS revealed 48 compounds, of which esters accounted for 63% and alcohols accounted for 27% of the total content. The flavor profile of the beer varied across different baking temperatures. Pyrazines and aldehydes were predominantly present in samples baked at higher temperatures (T3, T4, and T5). Correlation analysis showed that the baking flavor in the beer was primarily correlated with 2, 5-dimethyl-pyrazine, trimethyl-pyrazine, phenylacetaldehyde, and ethyl 9-decenoate (R > 0.9).
Collapse
Affiliation(s)
- Feng Ao
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China
| | - Jianhang Wu
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China
| | - Ran Qiu
- China Resources Snow Breweries Co., Ltd, Beijing 100000, China
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Li Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China
| | - Xuyan Zong
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, Sichuan, China
| |
Collapse
|
2
|
Bitew D, Tesfaye A, Andualem B. Isolation, screening and identification of ethanol producing yeasts from Ethiopian fermented beverages. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 40:e00815. [PMID: 37876548 PMCID: PMC10590766 DOI: 10.1016/j.btre.2023.e00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/25/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
The growing demand for renewable energy sources such as bioethanol is facing a lack of efficient ethanologenic microbes. This study aimed to isolate and screen ethanologenic yeasts from Ethiopian fermented beverages. A progressive screening and selection approach was employed. Selected isolates were evaluated for bioethanol production using banana peel waste as substrate. A total of 102 isolates were obtained. Sixteen isolates were selected based on their tolerance to stress conditions and carbohydrate fermentation and assimilation capacity. Most found moderately tolerant to 10 %, but slightly tolerant at 15 and 20 % (v/v) ethanol concentration. They yield 15.3 to 20.1 g/L and 9.1 ± 0.6 to 12.9 ± 1.3 g/L ethanol from 2 % (w/v) glucose and 80 g/L banana peel, respectively. Molecular characterization identified them as Saccharomyces cerevisiae strains. Results demonstrate insight about their potential role in the ethanol industry. Optimization of the fermentation conditions is recommended.
Collapse
Affiliation(s)
- Dagnew Bitew
- Department of Biology, Mizan-Tepi University, P. BOX: 260, Ethiopia
- Institute of Biotechnology, University of Gondar, P.BOX: 196, Ethiopia
| | - Anteneh Tesfaye
- Institute of Biotechnology, Addis Ababa University, P.BOX: 1176, Ethiopia
- BioTEI, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
3
|
Hou D, Xu X, Wang J, Liu C, Niu C, Zheng F, Li Q. Effect of environmental stresses during fermentation on brewing yeast and exploration on the novel flocculation-associated function of RIM15 gene. BIORESOURCE TECHNOLOGY 2023; 379:129004. [PMID: 37004888 DOI: 10.1016/j.biortech.2023.129004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Flocculation of brewer's yeast is an environment-friendly and cost-effective way to separate yeast cells from fermentation broth for subsequent production. Diverse genetic background and complex fermentation environment cause difficulty to explore flocculation mechanism and regulate yeast flocculation. In this study, comparative transcriptome analysis was carried out between an industrial brewing yeast and its flocculation-enhanced mutant strain, unveiling the differentially-expressed genes were enriched in response to stresses. The expression level of Lg-FLO1 was the highest among all FLO genes. Environmental stresses of fermentation were simulated to stimulated yeast cells and it was found that nitrogen and amino acid starvation promoted the process of flocculation. It is the first time to reveal the nutrient-responsive gene RIM15 has a novel genetic function regulating flocculation. The study provides novel direction and strategies to manage yeast flocculation and achieve effective cell utilization in fermentation.
Collapse
Affiliation(s)
- Dan Hou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xin Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
4
|
Wang WH, Lai TX, Wu YC, Chen ZT, Tseng KY, Lan CY. Associations of Rap1 with Cell Wall Integrity, Biofilm Formation, and Virulence in Candida albicans. Microbiol Spectr 2022; 10:e0328522. [PMID: 36416583 PMCID: PMC9769648 DOI: 10.1128/spectrum.03285-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Rap1 (repressor activator protein 1) is a multifunctional protein, playing important roles in telomeric and nontelomeric functions in many eukaryotes. Candida albicans Rap1 has been previously shown to be involved in telomeric regulation, but its other functions are still mostly unknown. In this study, we found that the deletion of the RAP1 gene altered cell wall properties, composition, and gene expression. In addition, deletion of RAP1 affected C. albicans biofilm formation and modulated phagocytosis and cytokine release by host immune cells. Finally, the RAP1 gene deletion mutant showed attenuation of C. albicans virulence in a Galleria mellonella infection model. Therefore, these findings provide new insights into Rap1 functions that are particularly relevant to pathogenesis and virulence of C. albicans. IMPORTANCE C. albicans is an important fungal pathogen of humans. The cell wall is the outermost layer of C. albicans and is important for commensalism and infection by this pathogen. Moreover, the cell wall is also an important target for antifungals. Studies of how C. albicans maintains its cell wall integrity are critical for a better understanding of fungal pathogenesis and virulence. This work focuses on exploring unknown functions of C. albicans Rap1 and reveals its contribution to cell wall integrity, biofilm formation, and virulence. Notably, these findings will also improve our general understanding of complex machinery to control pathogenesis and virulence of fungal pathogens.
Collapse
Affiliation(s)
- Wen-Han Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting-Xiu Lai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Chia Wu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Zzu-Ting Chen
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Kuo-Yun Tseng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Taiwan Mycology Reference Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Township, Miaoli County, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Kato T, Takahashi T. Studies on the Genetic Characteristics of the Brewing Yeasts Saccharomyces: A Review. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2134972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Taku Kato
- Brewing Science Laboratories, Asahi Quality and Innovations Ltd, Moriya, Japan
| | - Tomoko Takahashi
- Core Technology Laboratories, Asahi Quality and Innovations Ltd, Moriya, Japan
| |
Collapse
|
6
|
Martínez A, Zamora E, Álvarez ML, Bautista-Gallego J, Ramírez M. Genetic improvement of non-conventional Torulaspora delbrueckii for traditional sparkling winemaking by mixing for eventual hybridization with Saccharomyces cerevisiae. Front Microbiol 2022; 13:1006978. [PMID: 36274726 PMCID: PMC9583163 DOI: 10.3389/fmicb.2022.1006978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Non-conventional yeasts such as Torulaspora delbrueckii (Td) have been proposed for sparkling winemaking. Unfortunately, this yeast has poor efficiency in completing wine fermentation as compared to Saccharomyces cerevisiae (Sc). New mutants with increased resistance to SO2, ethanol, and high CO2 pressure were previously isolated from spore clones of Td. Although these mutants showed improved capability for base wine fermentation, there is still room for genetic improvement of Td yeasts until the fermentative capacity of Sc is achieved. As an alternative approach, yeast mixture for eventual hybridization of Td with Sc was assayed in this study. The new yeast mixture clones (Sc-mixed Td) showed an intermediate phenotype between both parent yeasts for some relevant biotechnological properties, such as resistance to SO2, ethanol, copper, high CO2 pressure, and high temperature, as well as flocculation potential. These properties varied depending on the specific Sc-mixed Td clone. Several mixture clones showed improved capability for base wine fermentation as compared to the Td parent strain, approaching the fermentation capability of the Sc parent strain. The organoleptic quality of sparkling wine was also improved by using some mixture clones and this improved quality coincided with an increased amount of acetate and ethyl esters. The genetic stability of some Sc-mixed Td clones was good enough for commercial yeast production and winery applications.
Collapse
Affiliation(s)
- Alberto Martínez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Emiliano Zamora
- Estación Enológica, Junta de Extremadura, Almendralejo, Spain
| | | | - Joaquín Bautista-Gallego
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Manuel Ramírez,
| |
Collapse
|
7
|
Akpoghelie PO, Edo GI, Akhayere E. Proximate and nutritional composition of beer produced from malted sorghum blended with yellow cassava. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Ding H, Chen Z, Kollipara PS, Liu Y, Kim Y, Huang S, Zheng Y. Programmable Multimodal Optothermal Manipulation of Synthetic Particles and Biological Cells. ACS NANO 2022; 16:10878-10889. [PMID: 35816157 PMCID: PMC9901196 DOI: 10.1021/acsnano.2c03111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Optical manipulation of tiny objects has benefited many research areas ranging from physics to biology to micro/nanorobotics. However, limited manipulation modes, intense lasers with complex optics, and applicability to limited materials and geometries of objects restrict the broader uses of conventional optical tweezers. Herein, we develop an optothermal platform that enables the versatile manipulation of synthetic micro/nanoparticles and live cells using an ultralow-power laser beam and a simple optical setup. Five working modes (i.e., printing, tweezing, rotating, rolling, and shooting) have been achieved and can be switched on demand through computer programming. By incorporating a feedback control system into the platform, we realize programmable multimodal control of micro/nanoparticles, enabling autonomous micro/nanorobots in complex environments. Moreover, we demonstrate in situ three-dimensional single-cell surface characterizations through the multimodal optothermal manipulation of live cells. This programmable multimodal optothermal platform will contribute to diverse fundamental studies and applications in cellular biology, nanotechnology, robotics, and photonics.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhihan Chen
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Youngsun Kim
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Suichu Huang
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, 92 Xidazhijie St., Harbin 15001, China
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Yeast Strains and Wort Color as Factors Affecting Effects of the Ethanol Fermentation Process. Molecules 2022; 27:molecules27133971. [PMID: 35807223 PMCID: PMC9268092 DOI: 10.3390/molecules27133971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Dark malts used in the production of brewing wort affect the ethanol fermentation process, the phenolic content, antioxidant capacity and the physiology of yeast cells. An innovative element of this research is the combination of investigating the effect of beer wort color modulated by the use of dark specialty malts on the course and effects of fermentation and the characteristics of post-fermentation yeast biomass of brewer’s strains with different characteristics. Dark and pale beer were obtained. The beers had different ethanol contents (4.51–5.79% v/v), resulting from real (62.29–80.36%) and apparent (75.37–98.26%) attenuation levels. Metabolic and morphological differences were demonstrated in the brewer’s yeast strains used. S. cerevisiae var. diastaticus was distinguished by its ability to ferment dextrin, resulting in the highest ethanol content in beers. The total phenolic content in beer depends on the color of the wort and the yeast strain used (244.48–547.56 mg of gallic acid/L). Dark beers show higher ferric ion reduction ability (FRAP) and antioxidant capacity (ABTS•+) than pale beers fermented with the same yeast strains. Through biomass analysis, differences in yeast cell physiology depending on yeast strain and beer wort color were also revealed.
Collapse
|
10
|
Shoket H, Parvez S, Sharma M, Pandita M, Sharma V, Kumar P, Bairwa NK. Deletion of autophagy related, ATG1 and F-box motif encoding YDR131C, together, lead to synthetic growth defects and flocculation behavior in Saccharomyces cerevisiae. J Biochem Mol Toxicol 2022; 36:e23064. [PMID: 35385166 DOI: 10.1002/jbt.23064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022]
Abstract
Ubiquitin proteasome system (UPS) and autophagy both pathways are involved in clearing the nonessential cellular components and also crosstalk during cellular response to normal and stress conditions. The F-box motif proteins constitute the SCF-E3 ligase complex of the UPS pathway in Saccharomyces cerevisiae and are involved in the substrate recruitment for ubiquitination. The ATG1 encoded Atg1p, a conserved serine-threonine kinase is crucial for the autophagy process. Here in this study, we report that loss of F-box motif encoding YDR131C and ATG1 together results in growth defects, floc formation, sensitivity to hydroxyurea, methyl methanesulfonate, and hydrogen peroxide. Both the genes also interact with the flocculation-related genes (FLO) and associate with gene ontology terms "ubiquitin-protein transferase activity" and "cellular catabolic process." Based on in silico analysis and experimental evidence we conclude that YDR131C and ATG1 function in parallel pathways to regulate the growth, flocculation, and stress response.
Collapse
Affiliation(s)
- Heena Shoket
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Sadia Parvez
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Meenu Sharma
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Monika Pandita
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Vishali Sharma
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Prabhat Kumar
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Narendra K Bairwa
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| |
Collapse
|
11
|
Alkalbani NS, Osaili TM, Al-Nabulsi AA, Olaimat AN, Liu SQ, Shah NP, Apostolopoulos V, Ayyash MM. Assessment of Yeasts as Potential Probiotics: A Review of Gastrointestinal Tract Conditions and Investigation Methods. J Fungi (Basel) 2022; 8:jof8040365. [PMID: 35448596 PMCID: PMC9027893 DOI: 10.3390/jof8040365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
Probiotics are microorganisms (including bacteria, yeasts and moulds) that confer various health benefits to the host, when consumed in sufficient amounts. Food products containing probiotics, called functional foods, have several health-promoting and therapeutic benefits. The significant role of yeasts in producing functional foods with promoted health benefits is well documented. Hence, there is considerable interest in isolating new yeasts as potential probiotics. Survival in the gastrointestinal tract (GIT), salt tolerance and adherence to epithelial cells are preconditions to classify such microorganisms as probiotics. Clear understanding of how yeasts can overcome GIT and salt stresses and the conditions that support yeasts to grow under such conditions is paramount for identifying, characterising and selecting probiotic yeast strains. This study elaborated the adaptations and mechanisms underlying the survival of probiotic yeasts under GIT and salt stresses. This study also discussed the capability of yeasts to adhere to epithelial cells (hydrophobicity and autoaggregation) and shed light on in vitro methods used to assess the probiotic characteristics of newly isolated yeasts.
Collapse
Affiliation(s)
- Nadia S. Alkalbani
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Tareq M. Osaili
- Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P. O. Box 330127, Zarqa 13133, Jordan;
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2, Singapore 117542, Singapore;
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077, China;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Mutamed M. Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Correspondence:
| |
Collapse
|
12
|
Carvalho DO, Guido LF. A review on the fate of phenolic compounds during malting and brewing: Technological strategies and beer styles. Food Chem 2022; 372:131093. [PMID: 34619521 DOI: 10.1016/j.foodchem.2021.131093] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/03/2023]
Abstract
This review provides an overview on the influence of malting and brewing on the overall phenolic content of barley malt and beer. Beer phenolics are mainly originated from barley malt and can be found in free and bound forms, in concentrations up to 50% lower comparing to sweet wort. The use of roasted malts, in combination with proper milling and high mashing temperatures at low pH can lead to a release of bound phenolic forms and increased extraction. New technological strategies such as special yeasts, manipulation of enzymatic activity and dry-hopping may be relevant to improve the phenolic profile of beer and attain phenolic levels with benefits both for beer stability and consumer's health. As the content of free ferulic acid in beer only accounts up to approximately 15% of total content, further studies should put emphasis on its bound forms in different beer styles and non-alcoholic beers.
Collapse
Affiliation(s)
- Daniel O Carvalho
- REQUIMTE/LAQV - Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Luís F Guido
- REQUIMTE/LAQV - Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
13
|
The Improvement of Reserve Polysaccharide Glycogen Level and Other Quality Parameters of S. cerevisiae Brewing Dry Yeasts by Their Rehydration in Water, Treated with Low-Temperature, Low-Pressure Glow Plasma (LPGP). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The increasing popularity of active dry yeast arises from its properties, such as ease of storage, and simplicity of preparation and dosing. Herein, we elaborate on the effect of plasma-treated water (PTW) under air atmosphere (PTWAir) and nitrogen (PTWN) on the improvement of the reserve polysaccharide glycogen level and other quality parameters of S. cerevisiae brewing dry yeast in comparison with the non plasma-treated water (CW). For this purpose, strains of top-fermenting (S. cerevisiae T58 (poor quality), S33 (poor quality)) and bottom-fermenting (S. pastorianus W30/70 (poor quality)) yeast stored one year after opening and S. cerevisiae US-05 (fresh strain) were selected to examine the influence of PTWs toward the quality parameters of yeast biomass after the rehydration and fermentation process. The obtained results showed that in the case of poor quality yeast strains, PTWAir increased glycogen content after the rehydration and fermentation process, which was a favorable trend. A similar increase was observed for the trehalose content. Results showed that PTWN significantly reduced the number of yeast cells in ale strains and the viability of all analyzed samples. The lowest viability was observed in Sc S33 strain for PTWAir (41.99%), PTWN (18.6%) and CW (22.86%). PTWAir did not contribute to reducing the analyzed parameter; in particular, the results of Sc T58 yeast strain’s viability are shown: PTWAir (58.83%), PTWN (32.28%) and CW (43.56%). The obtained results suggest that rehydration by PTWN of dry yeast with a weakened condition is not recommended for both qualitative and cost-related reasons, while PTWAir significantly contributed to the improvement of some yeast parameters after rehydration and fermentation (higher glycogen and trehalose content).
Collapse
|
14
|
Coffee brews as food matrices for delivering probiotics: Opportunities, challenges, and potential health benefits. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Potential for Lager Beer Production from Saccharomyces cerevisiae Strains Isolated from the Vineyard Environment. Processes (Basel) 2021. [DOI: 10.3390/pr9091628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Saccharomyces pastorianus, genetic hybrids of Saccharomyces cerevisiae and the Saccharomyces eubayanus, is one of the most widely used lager yeasts in the brewing industry. In recent years, new strategies have been adopted and new lines of research have been outlined to create and expand the pool of lager brewing starters. The vineyard microbiome has received significant attention in the past few years due to many opportunities in terms of biotechnological applications in the winemaking processes. However, the characterization of S. cerevisiae strains isolated from winery environments as an approach to selecting starters for beer production has not been fully investigated, and little is currently available. Four wild cryotolerant S. cerevisiae strains isolated from vineyard environments were evaluated as potential starters for lager beer production at laboratory scale using a model beer wort (MBW). In all tests, the industrial lager brewing S. pastorianus Weihenstephan 34/70 was used as a reference strain. The results obtained, although preliminary, showed some good properties of these strains, such as antioxidant activity, flocculation capacity, efficient fermentation at 15 °C and low diacetyl production. Further studies will be carried out using these S. cerevisiae strains as starters for lager beer production on a pilot scale in order to verify the chemical and sensory characteristics of the beers produced.
Collapse
|
16
|
High Foam Phenotypic Diversity and Variability in Flocculant Gene Observed for Various Yeast Cell Surfaces Present as Industrial Contaminants. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many contaminant yeast strains that survive inside fuel ethanol industrial vats show detrimental cell surface phenotypes. These harmful effects may include filamentation, invasive growth, flocculation, biofilm formation, and excessive foam production. Previous studies have linked some of these phenotypes to the expression of FLO genes, and the presence of gene length polymorphisms causing the expansion of FLO gene size appears to result in stronger flocculation and biofilm formation phenotypes. We performed here a molecular analysis of FLO1 and FLO11 gene polymorphisms present in contaminant strains of Saccharomyces cerevisiae from Brazilian fuel ethanol distilleries showing vigorous foaming phenotypes during fermentation. The size variability of these genes was correlated with cellular hydrophobicity, flocculation, and highly foaming phenotypes in these yeast strains. Our results also showed that deleting the primary activator of FLO genes (the FLO8 gene) from the genome of a contaminant and highly foaming industrial strain avoids complex foam formation, flocculation, invasive growth, and biofilm production by the engineered (flo8∆::BleR/flo8Δ::kanMX) yeast strain. Thus, the characterization of highly foaming yeasts and the influence of FLO8 in this phenotype open new perspectives for yeast strain engineering and optimization in the sugarcane fuel-ethanol industry.
Collapse
|
17
|
Huismann M, Gormley F, Dzait D, Willoughby N, Stewart K, Speers RA, Maskell DL. Unfilterable Beer Haze Part II: Identifying Suspect Cell Wall Proteins. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1937461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Margaux Huismann
- International Centre for Brewing and Distilling, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland
| | | | | | - Nik Willoughby
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland
| | - Kelly Stewart
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland
| | - R. Alex Speers
- International Centre for Brewing and Distilling, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland
- Canadian Institute of Fermentation Technology, Dalhousie University, Halifax, NS, Canada
| | - Dawn L. Maskell
- International Centre for Brewing and Distilling, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland
| |
Collapse
|
18
|
Eigenfeld M, Kerpes R, Becker T. Understanding the Impact of Industrial Stress Conditions on Replicative Aging in Saccharomyces cerevisiae. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:665490. [PMID: 37744109 PMCID: PMC10512339 DOI: 10.3389/ffunb.2021.665490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/30/2021] [Indexed: 09/26/2023]
Abstract
In yeast, aging is widely understood as the decline of physiological function and the decreasing ability to adapt to environmental changes. Saccharomyces cerevisiae has become an important model organism for the investigation of these processes. Yeast is used in industrial processes (beer and wine production), and several stress conditions can influence its intracellular aging processes. The aim of this review is to summarize the current knowledge on applied stress conditions, such as osmotic pressure, primary metabolites (e.g., ethanol), low pH, oxidative stress, heat on aging indicators, age-related physiological changes, and yeast longevity. There is clear evidence that yeast cells are exposed to many stressors influencing viability and vitality, leading to an age-related shift in age distribution. Currently, there is a lack of rapid, non-invasive methods allowing the investigation of aspects of yeast aging in real time on a single-cell basis using the high-throughput approach. Methods such as micromanipulation, centrifugal elutriator, or biotinylation do not provide real-time information on age distributions in industrial processes. In contrast, innovative approaches, such as non-invasive fluorescence coupled flow cytometry intended for high-throughput measurements, could be promising for determining the replicative age of yeast cells in fermentation and its impact on industrial stress conditions.
Collapse
Affiliation(s)
| | - Roland Kerpes
- Research Group Beverage and Cereal Biotechnology, Institute of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | | |
Collapse
|
19
|
Abstract
Previous research has shown that hops contain enzymes able to hydrolyze unfermentable dextrins into fermentable sugars when added during the dry-hopping process. In the presence of live yeast, these additional fermentable sugars can lead to an over-attenuation of the beer; a phenomenon known as “hop creep”. This study attempts to analyze the effect of different Saccharomyces yeast species and strains on hop creep, with the intent to find an ability to mitigate the effects of dry-hop creep by using a specific yeast. Thirty different yeast species and strains were chosen from commercial and academic collections and propagated for pilot fermentations. Brews were performed at the Anheuser-Busch Research Brewery (1.8 hL, 10 °P, 20 IBU) at UC Davis and split to 40 L cylindroconical fermenters, with one fermenter in each yeast pair receiving 10 g/L Centennial hop pellets towards the end of fermentation. Standard analytical measurements were performed over the course of fermentation, with real degrees of fermentation (RDF) and extract measured on an Anton Paar alcolyzer. In order to preemptively determine the amount of hop creep to be experienced with each unknown fermentation, bench-top fermentations with 20 g/L dry-hops were performed concurrently and compared to the pilot scale fermentations. RDF was significantly higher (p < 0.01) on dry-hopped than non-dry-hopped fermentations beginning two days post dry-hopping to the end of fermentation, with the exceptions of SafAle™ BE-134, a S. cerevisiae var. diastaticus, and UCDFST 11-510, a S. mikatae. No apparent correlation between flocculation and increased RDF was shown in dry-hopped treatments. pH was significantly different between the dry-hopped and non-hopped fermentations (p < 0.05 one day post dry-hop, p < 0.01 for all subsequent days); this may have impacted on additional attenuation. No yeasts in this study indicated their use for mitigation of dry-hop creep, but this is a first look at beer fermentation for some of the chosen yeasts. The results also present a new perspective on how hop creep varies in fermentation.
Collapse
|
20
|
Industrially Applicable De Novo Lager Yeast Hybrids with a Unique Genomic Architecture: Creation and Characterization. Appl Environ Microbiol 2021; 87:AEM.02434-20. [PMID: 33188002 PMCID: PMC7848916 DOI: 10.1128/aem.02434-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/07/2020] [Indexed: 12/30/2022] Open
Abstract
All lager beer is produced using two related lager yeast types: group I and group II, which are highly similar, resulting in a lack of strain diversity for lager beer production. To date, approaches for generating new lager yeasts have generated strains possessing undesirable brewing characteristics which render them commercially inviable. Lager beer is produced by Saccharomyces pastorianus, which is a natural allopolyploid hybrid between Saccharomyces cerevisiae and Saccharomyces eubayanus. Lager strains are classified into two major groups based largely on genomic composition: group I and group II. Group I strains are allotriploid, whereas group II strains are allotetraploid. A lack of phenotypic diversity in commercial lager strains has led to substantial interest in the reconstitution of de novo allotetraploid lager strains by hybridization of S. cerevisiae and S. eubayanus strains. Such strategies rely on the hybridization of wild S. eubayanus isolates, which carry unacceptable traits for commercial lager beer such as phenolic off flavors and incomplete utilization of carbohydrates. Using an alternative breeding strategy, we have created de novo lager hybrids containing the domesticated S. eubayanus subgenome from an industrial S. pastorianus strain by hybridizing diploid meiotic segregants of this strain to a variety of S. cerevisiae ale strains. Five de novo hybrids were isolated which had fermentation characteristics similar to those of prototypical commercial lager strains but with unique phenotypic variation due to the contributions of the S. cerevisiae parents. Genomic analysis of these de novo lager hybrids identified novel allotetraploid genomes carrying three copies of the S. cerevisiae genome and one copy of the S. eubayanus genome. Most importantly, these hybrids do not possess the negative traits which result from breeding wild S. eubayanus. The de novo lager strains produced using industrial S. pastorianus in this study are immediately suitable for industrial lager beer production. IMPORTANCE All lager beer is produced using two related lager yeast types: group I and group II, which are highly similar, resulting in a lack of strain diversity for lager beer production. To date, approaches for generating new lager yeasts have generated strains possessing undesirable brewing characteristics which render them commercially inviable. We have used an alternative approach that circumvents this issue and created new lager strains that are directly suitable for lager beer production. These novel lager strains also possess a unique genomic architecture, which may lead to a better understanding of industrial yeast hybrids. We propose that strains created using our approach be classified as a third group of lager strains (group III). We anticipate that these novel lager strains will be of great industrial relevance and that this technique will be applicable to the creation of additional novel lager strains that will help broaden the diversity in commercial lager beer strains.
Collapse
|
21
|
Flocculation Type and the Lg-FLO1 Gene of Bottom-Fermenting Yeast Are Derived from Top-Fermenting Yeast. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1843944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Prospective production of fructose and single cell protein from date palm waste. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Mehta DV, Curtis SJ, Rudolph AB, Mary CS, Goodrich R, Schneider KR, MacIntosh AJ. A Mini Review: The History of Yeast Flocculation with an Emphasis on Measurement Techniques. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1806006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Devanshu V. Mehta
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, U.S.A
| | - Savanna J. Curtis
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, U.S.A
| | - Arthur B. Rudolph
- Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL, U.S.A
| | - Colette St. Mary
- Department of Biology, University of Florida, Gainesville, FL, U.S.A
| | - Renee Goodrich
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, U.S.A
| | - Keith R. Schneider
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, U.S.A
| | - Andrew J. MacIntosh
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
24
|
Impact of flocculant addition in oil recovery from multiphasic fermentations. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Bellut K, Krogerus K, Arendt EK. Lachancea fermentati Strains Isolated From Kombucha: Fundamental Insights, and Practical Application in Low Alcohol Beer Brewing. Front Microbiol 2020; 11:764. [PMID: 32390994 PMCID: PMC7191199 DOI: 10.3389/fmicb.2020.00764] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 01/05/2023] Open
Abstract
With a growing interest in non-alcoholic and low alcohol beer (NABLAB), researchers are looking into non-conventional yeasts to harness their special metabolic traits for their production. One of the investigated species is Lachancea fermentati, which possesses the uncommon ability to produce significant amounts of lactic acid during alcoholic fermentation, resulting in the accumulation of lactic acid while exhibiting reduced ethanol production. In this study, four Lachancea fermentati strains isolated from individual kombucha cultures were investigated. Whole genome sequencing was performed, and the strains were characterized for important brewing characteristics (e.g., sugar utilization) and sensitivities toward stress factors. A screening in wort extract was performed to elucidate strain-dependent differences, followed by fermentation optimization to enhance lactic acid production. Finally, a low alcohol beer was produced at 60 L pilot-scale. The genomes of the kombucha isolates were diverse and could be separated into two phylogenetic groups, which were related to their geographical origin. Compared to a Saccharomyces cerevisiae brewers' yeast, the strains' sensitivities to alcohol and acidic conditions were low, while their sensitivities toward osmotic stress were higher. In the screening, lactic acid production showed significant, strain-dependent differences. Fermentation optimization by means of response surface methodology (RSM) revealed an increased lactic acid production at a low pitching rate, high fermentation temperature, and high extract content. It was shown that a high initial glucose concentration led to the highest lactic acid production (max. 18.0 mM). The data indicated that simultaneous lactic acid production and ethanol production occurred as long as glucose was present. When glucose was depleted and/or lactic acid concentrations were high, the production shifted toward the ethanol pathway as the sole pathway. A low alcohol beer (<1.3% ABV) was produced at 60 L pilot-scale by means of stopped fermentation. The beer exhibited a balanced ratio of sweetness from residual sugars and acidity from the lactic acid produced (13.6 mM). However, due to the stopped fermentation, high levels of diacetyl were present, which could necessitate further process intervention to reduce concentrations to acceptable levels.
Collapse
Affiliation(s)
- Konstantin Bellut
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | | | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
Bernardi B, Kayacan Y, Wendland J. Expansion of a Telomeric FLO/ALS-Like Sequence Gene Family in Saccharomycopsis fermentans. Front Genet 2018; 9:536. [PMID: 30542368 PMCID: PMC6277891 DOI: 10.3389/fgene.2018.00536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023] Open
Abstract
Non-Saccharomyces species have been recognized for their beneficial contribution to fermented food and beverages based on their volatile compound formation and their ability to ferment glucose into ethanol. At the end of fermentation brewer's yeast flocculate which provides an easy means of separation of yeasts from green beer. Flocculation in Saccharomyces cerevisiae requires a set of flocculation genes. These FLO-genes, FLO1, FLO5, FLO9, FLO10, and FLO11, are located at telomeres and transcription of these adhesins is regulated by Flo8 and Mss11. Here, we show that Saccharomycopsis fermentans, an ascomycete yeast distantly related to S. cerevisiae, possesses a very large FLO/ALS-like Sequence (FAS) family encompassing 34 genes. Fas proteins are variable in size and divergent in sequence and show similarity to the Flo1/5/9 family. Fas proteins show the general build with a signal peptide, an N-terminal carbohydrate binding PA14 domain, a central region differing by the number of repeats and a C-terminus with a consensus sequence for GPI-anchor attachment. Like FLO genes in S. cerevisiae, FAS genes are mostly telomeric with several paralogs at each telomere. We term such genes that share evolutionary conserved telomere localization "telologs" and provide several other examples. Adhesin expression in S. cerevisiae and filamentation in Candida albicans is regulated by Flo8 and Mss11. In Saccharomycopsis we identified only a single protein with similarity to Flo8 based on sequence similarity and the presence of a LisH domain.
Collapse
Affiliation(s)
- Beatrice Bernardi
- Department of Bioengineering Sciences, Research Group of Microbiology, Functional Yeast Genomics, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yeseren Kayacan
- Department of Bioengineering Sciences, Research Group of Microbiology, Functional Yeast Genomics, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jürgen Wendland
- Department of Bioengineering Sciences, Research Group of Microbiology, Functional Yeast Genomics, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|