1
|
Dubinkina V, Bhogale S, Hsieh PH, Dibaeinia P, Nambiar A, Maslov S, Yoshikuni Y, Sinha S. A transcriptomic atlas of acute stress response to low pH in multiple Issatchenkia orientalis strains. Microbiol Spectr 2024; 12:e0253623. [PMID: 38018981 PMCID: PMC10783018 DOI: 10.1128/spectrum.02536-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Issatchenkia orientalis is a promising industrial chassis to produce biofuels and bioproducts due to its high tolerance to multiple environmental stresses such as low pH, heat, and other chemicals otherwise toxic for the most widely used microbes. Yet, little is known about specific mechanisms of such tolerance in this organism, hindering our ability to engineer this species to produce valuable biochemicals. Here, we report a comprehensive study of the mechanisms of acidic tolerance in this species via transcriptome profiling across variable pH for 12 different strains with different phenotypes. We found multiple regulatory mechanisms involved in tolerance to low pH in different strains of I. orientalis, marking potential targets for future gene editing and perturbation experiments.
Collapse
Affiliation(s)
- Veronika Dubinkina
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- The Gladstone Institute of Data Science and Biotechnology, San Francisco, California, USA
| | - Shounak Bhogale
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Ping-Hung Hsieh
- Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Payam Dibaeinia
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Ananthan Nambiar
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Sergei Maslov
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yasuo Yoshikuni
- Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, Georgia, USA
- Department of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Doughty T, Kerkhoven E. Extracting novel hypotheses and findings from RNA-seq data. FEMS Yeast Res 2021; 20:5721245. [PMID: 32009158 PMCID: PMC7029681 DOI: 10.1093/femsyr/foaa007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Over the past decade, improvements in technology and methods have enabled rapid and relatively inexpensive generation of high-quality RNA-seq datasets. These datasets have been used to characterize gene expression for several yeast species and have provided systems-level insights for basic biology, biotechnology and medicine. Herein, we discuss new techniques that have emerged and existing techniques that enable analysts to extract information from multifactorial yeast RNA-seq datasets. Ultimately, this minireview seeks to inspire readers to query datasets, whether previously published or freshly obtained, with creative and diverse methods to discover and support novel hypotheses.
Collapse
Affiliation(s)
- Tyler Doughty
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Eduard Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| |
Collapse
|
3
|
Saccharomyces cerevisiae Gene Expression during Fermentation of Pinot Noir Wines at an Industrially Relevant Scale. Appl Environ Microbiol 2021; 87:AEM.00036-21. [PMID: 33741633 PMCID: PMC8208162 DOI: 10.1128/aem.00036-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
This study characterized Saccharomyces cerevisiae RC212 gene expression during Pinot noir fermentation at pilot scale (150 liters) using industry-relevant conditions. The reported gene expression patterns of RC212 are generally similar to those observed under laboratory fermentation conditions but also contain gene expression signatures related to yeast-environment interactions found in a production setting (e.g., the presence of non-Saccharomyces microorganisms). Saccharomyces cerevisiae metabolism produces ethanol and other compounds during the fermentation of grape must into wine. Thousands of genes change expression over the course of a wine fermentation, allowing S. cerevisiae to adapt to and dominate the fermentation environment. Investigations into these gene expression patterns previously revealed genes that underlie cellular adaptation to the grape must and wine environments, involving metabolic specialization and ethanol tolerance. However, the majority of studies detailing gene expression patterns have occurred in controlled environments that may not recapitulate the biological and chemical complexity of fermentations performed at production scale. Here, an analysis of the S. cerevisiae RC212 gene expression program is presented, drawing from 40 pilot-scale fermentations (150 liters) using Pinot noir grapes from 10 California vineyards across two vintages. A core gene expression program was observed across all fermentations irrespective of vintage, similar to that of laboratory fermentations, in addition to novel gene expression patterns likely related to the presence of non-Saccharomyces microorganisms and oxygen availability during fermentation. These gene expression patterns, both common and diverse, provide insight into Saccharomyces cerevisiae biology critical to fermentation outcomes under industry-relevant conditions. IMPORTANCE This study characterized Saccharomyces cerevisiae RC212 gene expression during Pinot noir fermentation at pilot scale (150 liters) using industry-relevant conditions. The reported gene expression patterns of RC212 are generally similar to those observed under laboratory fermentation conditions but also contain gene expression signatures related to yeast-environment interactions found in a production setting (e.g., the presence of non-Saccharomyces microorganisms). Key genes and pathways highlighted by this work remain undercharacterized, indicating the need for further research to understand the roles of these genes and their impact on industrial wine fermentation outcomes.
Collapse
|
4
|
Shekhawat K, Bauer FF, Setati ME. The transcriptomic response of a wine strain of Lachancea thermotolerans to oxygen deprivation. FEMS Yeast Res 2020; 20:5909970. [PMID: 32960268 DOI: 10.1093/femsyr/foaa054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/20/2020] [Indexed: 11/14/2022] Open
Abstract
The yeast Lachancea thermotolerans is of significant biotechnological interest, and selected strains of this species have become commonly used starter cultures in wine fermentation. However, the impact of this species on wine is frequently limited by the rapid dominance of Saccharomyces cerevisiae strains which are better adapted to wine alcoholic fermentation conditions. Previous studies have shown that the major limiting factor for L. thermotolerans competitive performance in the wine ecosystem is oxygen availability, and not ethanol levels as had been previously suggested. Here we investigated the transcriptional response of L. thermotolerans to anaerobiosis in wine fermentation conditions. The data show that L. thermotolerans broadly redirects gene expression towards genes involved in central carbon metabolism, lipid metabolism, remodeling of the cell wall as well as autophagy. Furthermore, the induction of genes that are likely involved in the generation of lactate indicates a redirection of metabolic flux towards this metabolite. The data provide the first insight into the oxygen-dependent response of L. thermotolerans and suggest potential genetic targets to improve lactate production and/or anaerobic fermentation performance of this yeast.
Collapse
Affiliation(s)
- Kirti Shekhawat
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, P/Bag X1 Matieland, 7600, Western Cape, South Africa
| | - Florian F Bauer
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, P/Bag X1 Matieland, 7600, Western Cape, South Africa
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, P/Bag X1 Matieland, 7600, Western Cape, South Africa
| |
Collapse
|
5
|
Zara G, Budroni M, Mannazzu I, Fancello F, Zara S. Yeast biofilm in food realms: occurrence and control. World J Microbiol Biotechnol 2020; 36:134. [PMID: 32776210 PMCID: PMC7415760 DOI: 10.1007/s11274-020-02911-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
In natural environments, microorganisms form microbial aggregates called biofilms able to adhere to a multitude of different surfaces. Yeasts make no exception to this rule, being able to form biofilms in a plethora of environmental niches. In food realms, yeast biofilms may cause major problems due to their alterative activities. In addition, yeast biofilms are tenacious structures difficult to eradicate or treat with the current arsenal of antifungal agents. Thus, much effort is being made to develop novel approaches to prevent and disrupt yeast biofilms, for example through the use of natural antimicrobials or small molecules with both inhibiting and dispersing properties. The aim of this review is to provide a synopsis of the most recent literature on yeast biofilms regarding: (i) biofilm formation mechanisms; (ii) occurrence in food and in food-related environments; and (iii) inhibition and dispersal using natural compounds, in particular.
Collapse
Affiliation(s)
- Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Francesco Fancello
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Severino Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
6
|
Effect of Several Nutrients and Environmental Conditions on Intracellular Melatonin Synthesis in Saccharomyces cerevisiae. Microorganisms 2020; 8:microorganisms8060853. [PMID: 32517009 PMCID: PMC7355912 DOI: 10.3390/microorganisms8060853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Melatonin is a bioactive compound that is present in fermented beverages and has been described to be synthesized by yeast during alcoholic fermentation. The aim of this study was to assess the capacity of intracellular and extracellular melatonin production by different Saccharomyces strains from diverse food origin and to study the effects of different fermentation parameters, such as sugar and nitrogen concentration, temperature or initial population, on melatonin production using a synthetic grape must medium. Melatonin from fermentation samples was analyzed by liquid chromatography mass spectrometry. Intracellular melatonin synthesis profile did not present differences between yeast strains. However, extracellular melatonin production depended on the yeast origin. Thus, we suggest that melatonin production and secretion during the different yeast growth phases follows a species-specific pattern. Other parameters that affected the fermentation process such as sugar content and low temperature had an impact on intracellular melatonin production profile, as well as the melatonin content within the cell. This study reports the effect of several conditions on the melatonin synthesis profile, highlighting its possible role as a signal molecule.
Collapse
|