1
|
Benyamin MS, Perisin MP, Hellman CA, Schwalm ND, Jahnke JP, Sund CJ. Modeling control and transduction of electrochemical gradients in acid-stressed bacteria. iScience 2023; 26:107140. [PMID: 37404371 PMCID: PMC10316662 DOI: 10.1016/j.isci.2023.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/05/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Transmembrane electrochemical gradients drive solute uptake and constitute a substantial fraction of the cellular energy pool in bacteria. These gradients act not only as "homeostatic contributors," but also play a dynamic and keystone role in several bacterial functions, including sensing, stress response, and metabolism. At the system level, multiple gradients interact with ion transporters and bacterial behavior in a complex, rapid, and emergent manner; consequently, experiments alone cannot untangle their interdependencies. Electrochemical gradient modeling provides a general framework to understand these interactions and their underlying mechanisms. We quantify the generation, maintenance, and interactions of electrical, proton, and potassium potential gradients under lactic acid-stress and lactic acid fermentation. Further, we elucidate a gradient-mediated mechanism for intracellular pH sensing and stress response. We demonstrate that this gradient model can yield insights on the energetic limitations of membrane transport, and can predict bacterial behavior across changing environments.
Collapse
Affiliation(s)
- Marcus S. Benyamin
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Matthew P. Perisin
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Caleb A. Hellman
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Nathan D. Schwalm
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Justin P. Jahnke
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Christian J. Sund
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| |
Collapse
|
2
|
Benito-Vaquerizo S, Nouse N, Schaap PJ, Hugenholtz J, Brul S, López-Contreras AM, Martins dos Santos VAP, Suarez-Diez M. Model-driven approach for the production of butyrate from CO 2/H 2 by a novel co-culture of C. autoethanogenum and C. beijerinckii. Front Microbiol 2022; 13:1064013. [PMID: 36620068 PMCID: PMC9815533 DOI: 10.3389/fmicb.2022.1064013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
One-carbon (C1) compounds are promising feedstocks for the sustainable production of commodity chemicals. CO2 is a particularly advantageous C1-feedstock since it is an unwanted industrial off-gas that can be converted into valuable products while reducing its atmospheric levels. Acetogens are microorganisms that can grow on CO2/H2 gas mixtures and syngas converting these substrates into ethanol and acetate. Co-cultivation of acetogens with other microbial species that can further process such products, can expand the variety of products to, for example, medium chain fatty acids (MCFA) and longer chain alcohols. Solventogens are microorganisms known to produce MCFA and alcohols via the acetone-butanol-ethanol (ABE) fermentation in which acetate is a key metabolite. Thus, co-cultivation of an acetogen and a solventogen in a consortium provides a potential platform to produce valuable chemicals from CO2. In this study, metabolic modeling was implemented to design a new co-culture of an acetogen and a solventogen to produce butyrate from CO2/H2 mixtures. The model-driven approach suggested the ability of the studied solventogenic species to grow on lactate/glycerol with acetate as co-substrate. This ability was confirmed experimentally by cultivation of Clostridium beijerinckii on these substrates in batch serum bottles and subsequently in pH-controlled bioreactors. Community modeling also suggested that a novel microbial consortium consisting of the acetogen Clostridium autoethanogenum, and the solventogen C. beijerinckii would be feasible and stable. On the basis of this prediction, a co-culture was experimentally established. C. autoethanogenum grew on CO2/H2 producing acetate and traces of ethanol. Acetate was in turn, consumed by C. beijerinckii together with lactate, producing butyrate. These results show that community modeling of metabolism is a valuable tool to guide the design of microbial consortia for the tailored production of chemicals from renewable resources.
Collapse
Affiliation(s)
- Sara Benito-Vaquerizo
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Niels Nouse
- Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands,UNLOCK Large Scale Infrastructure for Microbial Communities, Wageningen University and Research and Delft University of Technology, Wageningen, Netherlands
| | - Jeroen Hugenholtz
- Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| | - Ana M. López-Contreras
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands
| | | | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands,*Correspondence: Maria Suarez-Diez ✉
| |
Collapse
|
3
|
Brown JL, Perisin MA, Swift CL, Benyamin M, Liu S, Singan V, Zhang Y, Savage E, Pennacchio C, Grigoriev IV, O'Malley MA. Co‑cultivation of anaerobic fungi with Clostridium acetobutylicum bolsters butyrate and butanol production from cellulose and lignocellulose. J Ind Microbiol Biotechnol 2022; 49:6823545. [PMID: 36367297 PMCID: PMC9923384 DOI: 10.1093/jimb/kuac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
A system for co-cultivation of anaerobic fungi with anaerobic bacteria was established based on lactate cross-feeding to produce butyrate and butanol from plant biomass. Several co-culture formulations were assembled that consisted of anaerobic fungi (Anaeromyces robustus, Neocallimastix californiae, or Caecomyces churrovis) with the bacterium Clostridium acetobutylicum. Co-cultures were grown simultaneously (e.g., 'one pot'), and compared to cultures where bacteria were cultured in fungal hydrolysate sequentially. Fungal hydrolysis of lignocellulose resulted in 7-11 mM amounts of glucose and xylose, as well as acetate, formate, ethanol, and lactate to support clostridial growth. Under these conditions, one-stage simultaneous co-culture of anaerobic fungi with C. acetobutylicum promoted the production of butyrate up to 30 mM. Alternatively, two-stage growth slightly promoted solventogenesis and elevated butanol levels (∼4-9 mM). Transcriptional regulation in the two-stage growth condition indicated that this cultivation method may decrease the time required to reach solventogenesis and induce the expression of cellulose-degrading genes in C. acetobutylicum due to relieved carbon-catabolite repression. Overall, this study demonstrates a proof of concept for biobutanol and bio-butyrate production from lignocellulose using an anaerobic fungal-bacterial co-culture system.
Collapse
Affiliation(s)
- Jennifer L Brown
- Department of Chemical Engineering, University of California Santa Barbara, Rm 3357 Engineering II, Santa Barbara, CA 93117, USA
| | - Matthew A Perisin
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
| | - Candice L Swift
- Department of Chemical Engineering, University of California Santa Barbara, Rm 3357 Engineering II, Santa Barbara, CA 93117, USA
| | - Marcus Benyamin
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
| | - Sanchao Liu
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
| | - Vasanth Singan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yu Zhang
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emily Savage
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christa Pennacchio
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
4
|
Adeniyi A, Bello I, Mukaila T, Hammed A. A Review of Microbial Molecular Profiling during Biomass Valorization. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Troiano D, Orsat V, Dumont MJ. Solid-state co-culture fermentation of simulated food waste with filamentous fungi for production of bio-pigments. Appl Microbiol Biotechnol 2022; 106:4029-4039. [PMID: 35608668 DOI: 10.1007/s00253-022-11984-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The use of waste stream residues as feedstock for material production simultaneously helps reduce dependence on fossil-based resources and to shift toward a circular economy. This study explores the conversion of food waste into valuable chemicals, namely, bio-pigments. Here, a simulated food waste feedstock was converted into pigments via solid-state fermentation with the filamentous fungus Talaromyces albobiverticillius (NRRL 2120). Pigments including monascorubrin, rubropunctatin, and 7-(2-hydroxyethyl)-monascorubramine were identified as products of the fermentation via ultra-performance liquid chromatography coupled with quadrupole-time-of-flight electrospray ionization mass spectrometry. Pigments were obtained at concentrations of 32.5, 20.9, and 22.4 AU/gram dry substrate for pigments absorbing at 400, 475, and 500 nm, respectively. Pigment production was further enhanced by co-culturing T. albobiverticillius with Trichoderma reesei (NRRL 3652), and ultimately yielded 63.8, 35.6, and 43.6 AU/gds at the same respective wavelengths. This represents the highest reported production of pigments via solid-state fermentation of a non-supplemented waste stream feedstock. KEY POINTS: • Simulated food waste underwent solid-state fermentation via filamentous fungi. • Bio-pigments were obtained from fermentation of the simulated food waste. • Co-culturing multiple fungal species substantially improved pigment production.
Collapse
Affiliation(s)
- Derek Troiano
- Department of Bioresource Engineering, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Valérie Orsat
- Department of Bioresource Engineering, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Marie-Josée Dumont
- Department of Bioresource Engineering, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada.,Deptartment of Chemical Engineering, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
6
|
Detman A, Laubitz D, Chojnacka A, Kiela PR, Salamon A, Barberán A, Chen Y, Yang F, Błaszczyk MK, Sikora A. Dynamics of dark fermentation microbial communities in the light of lactate and butyrate production. MICROBIOME 2021; 9:158. [PMID: 34261525 PMCID: PMC8281708 DOI: 10.1186/s40168-021-01105-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/28/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND This study focuses on the processes occurring during the acidogenic step of anaerobic digestion, especially resulting from nutritional interactions between dark fermentation (DF) bacteria and lactic acid bacteria (LAB). Previously, we have confirmed that DF microbial communities (MCs) that fed on molasses are able to convert lactate and acetate to butyrate. The aims of the study were to recognize the biodiversity of DF-MCs able and unable to convert lactate and acetate to butyrate and to define the conditions for the transformation. RESULTS MCs sampled from a DF bioreactor were grown anaerobically in mesophilic conditions on different media containing molasses or sucrose and/or lactate and acetate in five independent static batch experiments. The taxonomic composition (based on 16S_rRNA profiling) of each experimental MC was analysed in reference to its metabolites and pH of the digestive liquids. In the samples where the fermented media contained carbohydrates, the two main tendencies were observed: (i) a low pH (pH ≤ 4), lactate and ethanol as the main fermentation products, MCs dominated with Lactobacillus, Bifidobacterium, Leuconostoc and Fructobacillus was characterized by low biodiversity; (ii) pH in the range 5.0-6.0, butyrate dominated among the fermentation products, the MCs composed mainly of Clostridium (especially Clostridium_sensu_stricto_12), Lactobacillus, Bifidobacterium and Prevotella. The biodiversity increased with the ability to convert acetate and lactate to butyrate. The MC processing exclusively lactate and acetate showed the highest biodiversity and was dominated by Clostridium (especially Clostridium_sensu_stricto_12). LAB were reduced; other genera such as Terrisporobacter, Lachnoclostridium, Paraclostridium or Sutterella were found. Butyrate was the main metabolite and pH was 7. Shotgun metagenomic analysis of the selected butyrate-producing MCs independently on the substrate revealed C.tyrobutyricum as the dominant Clostridium species. Functional analysis confirmed the presence of genes encoding key enzymes of the fermentation routes. CONCLUSIONS Batch tests revealed the dynamics of metabolic activity and composition of DF-MCs dependent on fermentation conditions. The balance between LAB and the butyrate producers and the pH values were shown to be the most relevant for the process of lactate and acetate conversion to butyrate. To close the knowledge gaps is to find signalling factors responsible for the metabolic shift of the DF-MCs towards lactate fermentation. Video Abstract.
Collapse
Affiliation(s)
- Anna Detman
- Institute of Biochemistry and Biophysics – Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Daniel Laubitz
- Department of Pediatrics at Steel Children’s Research Center College of Medicine, University of Arizona, 1501 N. Campbell Avenue, Room 3301, PO Box 245073, Tucson, Arizona 85724-5073 USA
| | - Aleksandra Chojnacka
- Institute of Biochemistry and Biophysics – Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
- Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Pawel R. Kiela
- Department of Pediatrics at Steel Children’s Research Center College of Medicine, University of Arizona, 1501 N. Campbell Avenue, Room 3301, PO Box 245073, Tucson, Arizona 85724-5073 USA
| | - Agnieszka Salamon
- Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, 1177 E. 4th Street, P.O. Box 210038, Tucson, Arizona 85721-0038 USA
| | - Yongjian Chen
- Department of Environmental Science, University of Arizona, 1177 E. 4th Street, P.O. Box 210038, Tucson, Arizona 85721-0038 USA
| | - Fei Yang
- Department of Environmental Science, University of Arizona, 1177 E. 4th Street, P.O. Box 210038, Tucson, Arizona 85721-0038 USA
| | - Mieczysław K. Błaszczyk
- Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Sikora
- Institute of Biochemistry and Biophysics – Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
7
|
Ibrahim M, Raajaraam L, Raman K. Modelling microbial communities: Harnessing consortia for biotechnological applications. Comput Struct Biotechnol J 2021; 19:3892-3907. [PMID: 34584635 PMCID: PMC8441623 DOI: 10.1016/j.csbj.2021.06.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Microbes propagate and thrive in complex communities, and there are many benefits to studying and engineering microbial communities instead of single strains. Microbial communities are being increasingly leveraged in biotechnological applications, as they present significant advantages such as the division of labour and improved substrate utilisation. Nevertheless, they also present some interesting challenges to surmount for the design of efficient biotechnological processes. In this review, we discuss key principles of microbial interactions, followed by a deep dive into genome-scale metabolic models, focussing on a vast repertoire of constraint-based modelling methods that enable us to characterise and understand the metabolic capabilities of microbial communities. Complementary approaches to model microbial communities, such as those based on graph theory, are also briefly discussed. Taken together, these methods provide rich insights into the interactions between microbes and how they influence microbial community productivity. We finally overview approaches that allow us to generate and test numerous synthetic community compositions, followed by tools and methodologies that can predict effective genetic interventions to further improve the productivity of communities. With impending advancements in high-throughput omics of microbial communities, the stage is set for the rapid expansion of microbial community engineering, with a significant impact on biotechnological processes.
Collapse
Affiliation(s)
- Maziya Ibrahim
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems Medicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
| | - Lavanya Raajaraam
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems Medicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
| | - Karthik Raman
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems Medicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
| |
Collapse
|
8
|
Bekiaris PS, Klamt S. Designing microbial communities to maximize the thermodynamic driving force for the production of chemicals. PLoS Comput Biol 2021; 17:e1009093. [PMID: 34129600 PMCID: PMC8232427 DOI: 10.1371/journal.pcbi.1009093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/25/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Microbial communities have become a major research focus due to their importance for biogeochemical cycles, biomedicine and biotechnological applications. While some biotechnological applications, such as anaerobic digestion, make use of naturally arising microbial communities, the rational design of microbial consortia for bio-based production processes has recently gained much interest. One class of synthetic microbial consortia is based on specifically designed strains of one species. A common design principle for these consortia is based on division of labor, where the entire production pathway is divided between the different strains to reduce the metabolic burden caused by product synthesis. We first show that classical division of labor does not automatically reduce the metabolic burden when metabolic flux per biomass is analyzed. We then present ASTHERISC (Algorithmic Search of THERmodynamic advantages in Single-species Communities), a new computational approach for designing multi-strain communities of a single-species with the aim to divide a production pathway between different strains such that the thermodynamic driving force for product synthesis is maximized. ASTHERISC exploits the fact that compartmentalization of segments of a product pathway in different strains can circumvent thermodynamic bottlenecks arising when operation of one reaction requires a metabolite with high and operation of another reaction the same metabolite with low concentration. We implemented the ASTHERISC algorithm in a dedicated program package and applied it on E. coli core and genome-scale models with different settings, for example, regarding number of strains or demanded product yield. These calculations showed that, for each scenario, many target metabolites (products) exist where a multi-strain community can provide a thermodynamic advantage compared to a single strain solution. In some cases, a production with sufficiently high yield is thermodynamically only feasible with a community. In summary, the developed ASTHERISC approach provides a promising new principle for designing microbial communities for the bio-based production of chemicals. Communities of microbes are ubiquitous in nature and also of high relevance for industrial applications, e.g. for the production of biogas. The development and use of non-natural communities for biotechnological applications has become an important subject of research. In this work, we present a new computational method to design synthetic communities with improved capabilities for the synthesis of desired target metabolites. Our method takes a constraint-based metabolic model of an organism as input and searches for a suitable partitioning of the product pathway via different strains of the organism such that the thermodynamic driving force for product synthesis is maximized. Essentially, this approach exploits the fact that having multiple strains allows adjustment of different metabolite concentrations in the different strains by which the thermodynamic driving force for product synthesis can often be increased. We tested this approach with a core and with a genome-scale metabolic network model of Escherichia coli. We found that, for dozens of metabolites, there exist communities with specifically designed strains of E. coli where the maximal thermodynamic driving force can be increased compared to a single E. coli strain. In summary, our presented method provides a new approach, together with a new design principle, for the computational design of microbial communities.
Collapse
Affiliation(s)
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
9
|
García-Depraect O, Castro-Muñoz R, Muñoz R, Rene ER, León-Becerril E, Valdez-Vazquez I, Kumar G, Reyes-Alvarado LC, Martínez-Mendoza LJ, Carrillo-Reyes J, Buitrón G. A review on the factors influencing biohydrogen production from lactate: The key to unlocking enhanced dark fermentative processes. BIORESOURCE TECHNOLOGY 2021; 324:124595. [PMID: 33453519 DOI: 10.1016/j.biortech.2020.124595] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 05/15/2023]
Abstract
Dark fermentation (DF) is one of the most promising biological methods to produce bio-hydrogen and other value added bio-products from carbohydrate-rich wastes and wastewater. However, process instability and low hydrogen production yields and rates have been highlighted as the major bottlenecks preventing further development. Numerous studies have associated such concerns with the inhibitory activity of lactate-producing bacteria (LAB) against hydrogen producers. However, an increasing number of studies have also shown lactate-based metabolic pathways as the prevailing platform for hydrogen production. This opens a vast potential to develop new strategies to deal with the "Achilles heel" of DF - LAB overgrowth - while untapping high-performance DF. This review discusses the key factors influencing the lactate-driven hydrogen production, paying particular attention to substrate composition, the operating conditions, as well as the microbiota involved in the process and its potential functionality and related biochemical routes. The current limitations and future perspectives in the field are also presented.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico; Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, P. O. Box 3015, 2601 DA Delft, the Netherlands
| | - Elizabeth León-Becerril
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico
| | - Idania Valdez-Vazquez
- Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, Stavanger 4036, Norway
| | - Luis C Reyes-Alvarado
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, A.C., Parque Científico de Yucatán, A.C., Carretera Sierra Papacal - Chuburná Puerto, km 5., 97302 Mérida, Yucatán, Mexico
| | - Leonardo J Martínez-Mendoza
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico
| | - Julián Carrillo-Reyes
- Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | - Germán Buitrón
- Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| |
Collapse
|
10
|
Detman A, Laubitz D, Chojnacka A, Wiktorowska-Sowa E, Piotrowski J, Salamon A, Kaźmierczak W, Błaszczyk MK, Barberan A, Chen Y, Łupikasza E, Yang F, Sikora A. Dynamics and Complexity of Dark Fermentation Microbial Communities Producing Hydrogen From Sugar Beet Molasses in Continuously Operating Packed Bed Reactors. Front Microbiol 2021; 11:612344. [PMID: 33488554 PMCID: PMC7819888 DOI: 10.3389/fmicb.2020.612344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
This study describes the dynamics and complexity of microbial communities producing hydrogen-rich fermentation gas from sugar-beet molasses in five packed-bed reactors (PBRs). The bioreactors constitute a part of a system producing hydrogen from the by-products of the sugar-beet industry that has been operating continuously in one of the Polish sugar factories. PBRs with different working volumes, packing materials, construction and inocula were tested. This study focused on analysis (based on 16S rRNA profiling and shotgun metagenomics sequencing) of the microbial communities selected in the PBRs under the conditions of high (>100 cm3/g COD of molasses) and low (<50 cm3/g COD of molasses) efficiencies of hydrogen production. The stability and efficiency of the hydrogen production are determined by the composition of dark fermentation microbial communities. The most striking difference between the tested samples is the ratio of hydrogen producers to lactic acid bacteria. The highest efficiency of hydrogen production (130-160 cm3/g COD of molasses) was achieved at the ratios of HPB to LAB ≈ 4:2.5 or 2.5:1 as determined by 16S rRNA sequencing or shotgun metagenomics sequencing, respectively. The most abundant Clostridium species were C. pasteurianum and C. tyrobutyricum. A multiple predominance of LAB over HPB (3:1-4:1) or clostridia over LAB (5:1-60:1) results in decreased hydrogen production. Inhibition of hydrogen production was illustrated by overproduction of short chain fatty acids and ethanol. Furthermore, concentration of ethanol might be a relevant marker or factor promoting a metabolic shift in the DF bioreactors processing carbohydrates from hydrogen-yielding toward lactic acid fermentation or solventogenic pathways. The novelty of this study is identifying a community balance between hydrogen producers and lactic acid bacteria for stable hydrogen producing systems. The balance stems from long-term selection of hydrogen-producing microbial community, operating conditions such as bioreactor construction, packing material, hydraulic retention time and substrate concentration. This finding is confirmed by additional analysis of the proportions between HPB and LAB in dark fermentation bioreactors from other studies. The results contribute to the advance of knowledge in the area of relationships and nutritional interactions especially the cross-feeding of lactate between bacteria in dark fermentation microbial communities.
Collapse
Affiliation(s)
- Anna Detman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Daniel Laubitz
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Aleksandra Chojnacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Wiktorowska-Sowa
- Krajowa Spółka Cukrowa S.A. Production Facility Dobrzelin Sugar Factory, Dobrzelin, Poland
| | - Jan Piotrowski
- Krajowa Spółka Cukrowa S.A. Production Facility Dobrzelin Sugar Factory, Dobrzelin, Poland
| | | | - Wiktor Kaźmierczak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysław K. Błaszczyk
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Albert Barberan
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Yongjian Chen
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Ewa Łupikasza
- Faculty of Earth Sciences, University of Silesia in Katowice, Sosnowiec, Poland
| | - Fei Yang
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Anna Sikora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Long-term preservation of hydrogenogenic biomass by refrigeration: Reactivation characteristics and microbial community structure. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
García-Depraect O, Muñoz R, van Lier JB, Rene ER, Diaz-Cruces VF, León-Becerril E. Three-stage process for tequila vinasse valorization through sequential lactate, biohydrogen and methane production. BIORESOURCE TECHNOLOGY 2020; 307:123160. [PMID: 32222692 DOI: 10.1016/j.biortech.2020.123160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
This study evaluated a novel three-stage process devoted to the cascade production of lactate, biohydrogen and methane from tequila vinasse (TV), with emphasis on attaining a high and stable biohydrogen production rate (HPR) by utilizing lactate as biohydrogen precursor. In the first stage, tailored operating conditions applied to a sequencing batch reactor were effective in sustaining a lactate concentration of 12.4 g/L, corresponding to 89% of the total organic acids produced. In the second stage, the stimulation of lactate-centered dark fermentation which entails the decoupling of biohydrogen production from carbohydrates utilization was an effective approach enabling stable biohydrogen production, having HPR fluctuations less than 10% with a maximum HPR of 12.3 L/L-d and a biohydrogen yield of 3.1 L/LTV. Finally, 1.6 L CH4/L-d and 6.5 L CH4/LTV were obtained when feeding the biohydrogen fermentation effluent to a third methanogenic stage, yielding a global energy recovery of 267.5 kJ/LTV.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Jules B van Lier
- Sanitary Engineering Section, Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands; Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P. O. Box 3015, 2601 DA Delft, The Netherlands
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P. O. Box 3015, 2601 DA Delft, The Netherlands
| | - Víctor F Diaz-Cruces
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Elizabeth León-Becerril
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico.
| |
Collapse
|
13
|
Abstract
Food is a precious commodity, and its production can be resource-intensive [...]
Collapse
|