1
|
Don SM, Rambli M, Nore BF. Antioxidant content following fermentation of lemongrass for herbal beverage development. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1-14. [PMID: 39431189 PMCID: PMC11486884 DOI: 10.1007/s13197-024-06005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 10/22/2024]
Abstract
Consumers have increasingly favoured fermented drinks due to their high content of probiotic secondary metabolites. These beverages are believed to possess the capacity to safeguard against non-communicable ailments such as coronary heart disease, cancer, diabetes, antimicrobial infections, and other dietary-related disorders. Lemongrass (Cymbopogon citratus) is a commonly used botanical ingredient in therapeutic tea production. It is renowned for its highly valuable essential oil, which has significant commercial demand. This study examines the functional content and antioxidant effects of fermented beverages derived from lemongrass. We employed the yeast Saccharomyces cerevisiae to carry out the fermentation process on the lemongrass compositions, extending the duration from t = 24 to t = 96 h. We used non-fermented samples as control. This investigation identified numerous active biomolecules and polyphenols in the fermented samples, including flavonoids, tannins, cardiac glycosides, coumarins, terpenoids, steroids, saponins, and reducing sugars. After t = 24 h fermentation, the radical-scavenging activity reached its maximum level of 89.1%, and the antioxidant content reached 13.06 µg/ml, which is equivalent to the amount of ascorbic acid. After t = 36 h fermentation, the total phenolic content reached a concentration of 237.19 µg/ml, while the flavonoid content reached its peak at 55.21 µg/ml after t = 72 h fermentation. Lemongrass fermentation exhibits a wide range of phytochemicals and bioactive components that effectively eliminate free radicals, despite the antioxidant content fluctuation throughout the fermentation period of t = 24 to t = 96 h.
Collapse
Affiliation(s)
- Siti Madihah Don
- Food Science and Technology, School of Applied Sciences and
Mathematics, Universiti Teknologi Brunei, Mukim Gadong A, BE1410 Brunei Darussalam
| | - Masmunira Rambli
- Food Science and Technology, School of Applied Sciences and
Mathematics, Universiti Teknologi Brunei, Mukim Gadong A, BE1410 Brunei Darussalam
| | - Beston Faiek Nore
- Food Science and Technology, School of Applied Sciences and
Mathematics, Universiti Teknologi Brunei, Mukim Gadong A, BE1410 Brunei Darussalam
- Department of Biomedical Sciences, Komar University of Sciences and Technology (KUST), Qliasan St, Sulaymaniyah City, Kurdistan Region 46002 Iraq
| |
Collapse
|
2
|
Vento M, Della Croce CM, Bellani L, Tassi EL, Echeverria MC, Giorgetti L. Effect of Sprouting, Fermentation and Cooking on Antioxidant Content and Total Antioxidant Activity in Quinoa and Amaranth. Int J Mol Sci 2024; 25:10972. [PMID: 39456755 PMCID: PMC11507448 DOI: 10.3390/ijms252010972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The study of different processing techniques, such as sprouting, cooking and fermentation, can help to develop new products for human health. In this work, raw, cooked and fermented seeds and germinated seeds of Chenopodium quinoa Willd. var. Tunkahuan and Amaranthus caudatus L. var. Alegrìa were compared for the content of antioxidant molecules, total antioxidant capacity and mineral elements. Fermentation was induced spontaneously, with the yeast Saccharomyces cerevisiae, with the bacterium Lactobacillus plantarum and with both microorganisms, for 24 and 48 h. The increase in antioxidant molecules and antioxidant activity was induced by germination, by 24 h of spontaneous fermentation (polyphenols and flavonoids) and by 24 h of L. plantarum fermentation (total antioxidant activity) for both species. Germinated seeds of the two plants showed higher values in respect to seeds of macroelements and microelements. No genotoxic but rather protective effects were determined for seed and germinated seed extracts using the D7 strain of S. cerevisiae, a good tool for the evaluation of protection from oxidative damage induced by radical oxygen species (ROS) in cells and tissues. Therefore, the two varieties could be very suitable for their use in human diet and in supplements, especially as germinated seeds or as fermented foods.
Collapse
Affiliation(s)
- Martina Vento
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy; (M.V.); (C.M.D.C.)
| | - Clara Maria Della Croce
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy; (M.V.); (C.M.D.C.)
| | - Lorenza Bellani
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy; (M.V.); (C.M.D.C.)
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Eliana Lanfranca Tassi
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council, 56124 Pisa, Italy;
| | - Maria Cristina Echeverria
- eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador;
| | - Lucia Giorgetti
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy; (M.V.); (C.M.D.C.)
| |
Collapse
|
3
|
Chu R, Uaila E, Ismail T, Lazarte CE. Effect of Short-Term Lactic Fermentation on Polyphenol Profile and Antioxidant Capacity in White and Red Quinoa Varieties. Foods 2024; 13:2413. [PMID: 39123604 PMCID: PMC11311816 DOI: 10.3390/foods13152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a pseudocereal originally grown in the Andean region of South America. This study focused on investigating the changes in phenolic profile and antioxidant capacity in white and red quinoa varieties after short-term fermentation with Lactiplantibacillus plantarum 299v®. During fermentation, pH and lactic acid formation were monitored every three hours until pH was below 4.6. The quinoa phenolic profile was quantified via LC-UV-MS. Total polyphenol content (TPC) and total antioxidant capacity (DPPH and FRAP) were determined via spectrophotometric methods. The findings showed that fermentation resulted in a significant increase (p < 0.001) in TPC from 4.68 to 7.78 mgGAE·100 g-1 for the white quinoa and from 5.04 to 8.06 mgGAE·100 g-1 for the red quinoa variety. Gallic acid was the most abundant phenolic acid detected in unfermented quinoa samples (averaging 229.5 μg·g-1). Fermented white quinoa showed an 18-fold increase in epicatechin, while catechin was found only in fermented red quinoa (59.19 μg·g-1). Fermentation showed a significantly positive impact on the iron-reducing antioxidant capacity (FRAP) of quinoa (p < 0.05). Red quinoa had a higher FRAP antioxidant capacity than the white variety; a similar trend was observed with the DPPH assay. There was a significant correlation (r > 0.9, p < 0.05) between TPC and antioxidant capacity. In conclusion, short-time lactic fermentation effectively increased phenolic content and antioxidant capacity in both quinoa varieties. Overall, red quinoa showed higher polyphenol content and antioxidant capacity compared to the white variety.
Collapse
Affiliation(s)
- Rui Chu
- Division of Food and Pharma, Department of Process and Life Science Engineering, Lunds Tekniska Högskola, Lund University, 22100 Lund, Sweden; (R.C.); (E.U.)
| | - Eulalia Uaila
- Division of Food and Pharma, Department of Process and Life Science Engineering, Lunds Tekniska Högskola, Lund University, 22100 Lund, Sweden; (R.C.); (E.U.)
- Department of Chemistry, Science Faculty, Eduardo Mondlane University, Maputo 257, Mozambique
| | - Tariq Ismail
- Department of Food Science & Technology, Faculty of Food Science & Nutrition, Bahauddin Zakariya University, Multan 66000, Punjab, Pakistan;
| | - Claudia E. Lazarte
- Division of Food and Pharma, Department of Process and Life Science Engineering, Lunds Tekniska Högskola, Lund University, 22100 Lund, Sweden; (R.C.); (E.U.)
| |
Collapse
|
4
|
Xi X, Fan G, Xue H, Peng S, Huang W, Zhan J. Harnessing the Potential of Quinoa: Nutritional Profiling, Bioactive Components, and Implications for Health Promotion. Antioxidants (Basel) 2024; 13:829. [PMID: 39061898 PMCID: PMC11273950 DOI: 10.3390/antiox13070829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Quinoa, a globally cultivated "golden grain" belonging to Chenopodium in the Amaranthaceae family, is recognized for being gluten-free, with a balanced amino acid profile and multiple bioactive components, including peptides, polysaccharides, polyphenols, and saponins. The bioactive compounds extracted from quinoa offer multifaceted health benefits, including antioxidative, anti-inflammatory, antimicrobial, cardiovascular disease (CVD) improvement, gut microbiota regulation, and anti-cancer effects. This review aims to intricately outline quinoa's nutritional value, functional components, and physiological benefits. Importantly, we comprehensively provide conclusions on the effects and mechanisms of these quinoa-derived bioactive components on multiple cancer types, revealing the potential of quinoa seeds as promising and effective anti-cancer agents. Furthermore, the health-promoting role of quinoa in modulating gut microbiota, maintaining gut homeostasis, and protecting intestinal integrity was specifically emphasized. Finally, we provided a forward-looking description of the opportunities and challenges for the future exploration of quinoa. However, in-depth studies of molecular targets and clinical trials are warranted to fully understand the bioavailability and therapeutic application of quinoa-derived compounds, especially in cancer treatment and gut microbiota regulation. This review sheds light on the prospect of developing dietary quinoa into functional foods or drugs to prevent and manage human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.X.); (G.F.); (H.X.); (S.P.); (W.H.)
| |
Collapse
|
5
|
Alkay Z, Falah F, Cankurt H, Dertli E. Exploring the Nutritional Impact of Sourdough Fermentation: Its Mechanisms and Functional Potential. Foods 2024; 13:1732. [PMID: 38890959 PMCID: PMC11172170 DOI: 10.3390/foods13111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Sourdough fermentation is one of the oldest traditional methods in food technology and occurs as a result of fermentation of flour prepared from grains. The nutritional role of sourdough is related to the final composition of fermented foods prepared through sourdough fermentation, and recently, sourdough has become an important application to improve nutrition characteristics of bread. Thanks to lactic acid bacteria (LAB) presented in sourdough microflora and metabolites partially produced by yeasts, technological and important nutritional features of the bread improve and an increase in shelf life is achieved. In addition, sourdough bread has a low glycemic index value, high protein digestibility, high mineral and antioxidant content, and improved dietary fiber composition, making it more attractive for human nutrition compared to regular bread. When the sourdough process is applied, the chemical and physical properties of fibers vary according to the degree of fermentation, revealing the physiological importance of dietary fiber and its importance to humans' large intestine microbiota. Therefore, taking these approach frameworks into consideration, this review highlights the benefits of sourdough fermentation in increasing nutrient availability and contributing positively to support human health.
Collapse
Affiliation(s)
- Zuhal Alkay
- Food Engineering Department, Faculty of Engineering, Necmettin Erbakan University, Konya 42010, Türkiye;
| | - Fereshteh Falah
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Hasan Cankurt
- Food Technology Department, Safiye Cikrikcioglu Vocational School, Kayseri University, Kayseri 38000, Türkiye;
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campüs, Istanbul 34210, Türkiye
| |
Collapse
|
6
|
Okomo Aloo S, Park S, Martins Oyinloye T, Oh DH. Rheological properties, biochemical changes, and potential health benefits of dehulled and defatted industrial hempseeds after fermentation. Food Chem 2024; 439:138086. [PMID: 38043281 DOI: 10.1016/j.foodchem.2023.138086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Dehulled hempseed (DHS), fermented dehulled hempseed (FDHS), hempseed cake (HSC), and fermented HSC (FHSC) were examined for their phytochemical composition, health benefits, and rheological characteristics. At 500 µg/mL concentration, DHS, FDHS, HSC, and FHSC extracts exhibited the ability to inhibit DPPH radicals, with 32.46 %, 47.35 %, 33.85 %, and 47.41 %, respectively. Similarly, they demonstrated potential to scavenge ABTS radicals by 13.7 %, 27.87 %, 14.40 % and 25.70 %, respectively. For lipase inhibition activity, FDHS (72.92 %) and FDHS (85.89 %) outperformed DHS (52.94 %) and HSC (43.08 %). Furthermore, FHSC enhanced the survival and reduced fat accumulation in glucose-supplemented Caenorhabditis elegans. We used HPLC and UHPLC-ESI-QTOF-MS for metabolite analysis, quantifying eight polyphenols using HPLC and identifying thirty-four metabolites with UHPLC-ESI-QTOF-MS. Generally, metabolomics indicated an improved metabolite profile after fermentation. Fermentation also showed impact on rheological characteristics, modifying viscosity, loss modulus, and storage modulus. These findings collectively demonstrate the ability of fermentation in enhancing overall value of hempseed.
Collapse
Affiliation(s)
- Simon Okomo Aloo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Timilehin Martins Oyinloye
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea.
| |
Collapse
|
7
|
Arjmand S, Mollakhalili‐Meybodi N, Akrami Mohajeri F, Madadizadeh F, Khalili Sadrabad E. Quinoa dough fermentation by Saccharomyces cerevisiae and lactic acid bacteria: Changes in saponin, phytic acid content, and antioxidant capacity. Food Sci Nutr 2023; 11:7594-7604. [PMID: 38107108 PMCID: PMC10724584 DOI: 10.1002/fsn3.3679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 12/19/2023] Open
Abstract
The effects of two fermentation processes (common fermentation with Saccharomyces cerevisiae and fermentation by Lacticaseibacillus casei subsp. casei PTCC 1608 and Lactiplantibacillus plantarum subsp. plantarum PTCC 1745) on pH, titratable acidity, total phenolic and flavonoid contents, antioxidant capacity, saponin content, as well as phytic acid content of quinoa dough were investigated during the 24-h fermentation (4-h interval). According to the results, the highest titratable acidity was observed in the samples fermented by L. casei subsp. casei. Moreover, the highest antioxidant capacity was observed after 12 h of fermentation by L. plantarum subsp. plantarum (31.22% for DPPH, 104.67% for FRAP) due to a higher concentration of phenolic compounds produced (170.5% for total phenolic content). Also, all samples have been able to reduce saponin by 67% on average. Furthermore, the samples fermented by L. plantarum subsp. plantarum showed the most significant decrease in phytic acid content (64.64%) during 24-h fermentation. By considering the reduction of the antinutritional compounds and improvement in the antioxidant properties of quinoa flour, the Lactiplantibacillus plantarum strain was recommended.
Collapse
Affiliation(s)
- Sanaz Arjmand
- Research Center for Food Hygiene and SafetyDepartment of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Neda Mollakhalili‐Meybodi
- Research Center for Food Hygiene and SafetyDepartment of Food Science and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Fateme Akrami Mohajeri
- Research Center for Food Hygiene and SafetyDepartment of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Infectious Diseases Research CenterShahid Sadoughi HospitalShahid Sadoughi University of Medical SciencesYazdIran
| | - Farzan Madadizadeh
- Center for Healthcare Data modelingDepartments of Biostatistics and Epidemiology, School of public healthShahid Sadoughi University of Medical SciencesYazdIran
| | - Elham Khalili Sadrabad
- Research Center for Food Hygiene and SafetyDepartment of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Infectious Diseases Research CenterShahid Sadoughi HospitalShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
8
|
Liu Y, Huang K, Zhang Y, Cao H, Luo DK, Yi C, Guan X. Manufacture and characterization of a novel dairy-free quinoa yogurt fermented by modified commercial starter with Weissella confusa. Food Chem X 2023; 19:100823. [PMID: 37780240 PMCID: PMC10534153 DOI: 10.1016/j.fochx.2023.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 10/03/2023] Open
Abstract
Non-dairy yogurt is increasingly thought to be healthy food. However, no suitable starters limit its development. This study aimed to develop a novel and functional quinoa yogurt with a modified commercial starter. Compared with the other lactic acid bacteria (LAB), Weissella confusa showed a better fermentation performance of quinoa utilization. The synergistic effect of W. confusa and the commercial starter promoted the growth of LAB. It increased the fermentation rate of quinoa yogurt, further improving its texture, rheological properties, and storage stability. The modified starter significantly increased the nutritional qualities of the quinoa yogurt, including polyphenol content, antioxidant activity, digestive enzyme inhibition, and reduced postprandial blood glucose ability. Additionally, the modified starter enhanced the digestibility and bioaccessibility of polyphenols, protein, and fat in fermented quinoa yogurt. Overall, the commercial starter with W. confusa showed great potential for possible application in quinoa yogurt development.
Collapse
Affiliation(s)
- Yongyong Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Da-ke Luo
- Liuyanghe Group Co., Ltd., Hunan, PR China
| | - Cuiping Yi
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Hunan, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| |
Collapse
|
9
|
Hu T, Gavahian M, Pradhan R, Lu S, Chu Y. Functional, antioxidant, and sensory properties of mixed-fruit (pitaya, watermelon, and mint) and pitaya wines. Food Sci Nutr 2023; 11:3442-3449. [PMID: 37324831 PMCID: PMC10261748 DOI: 10.1002/fsn3.3334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/17/2023] Open
Abstract
Fermentation of fruits offers a diverse range of flavors, smells, and colors. Colored fruits are rich in naturally occurring pigments, such as betacyanin. Hence, they are considered to possess powerful antioxidant activities. However, in wine production, such pigments often diversify the flavor and color of the wine. The objective of this study was to compare the quality of two types of wines: a single-fruit (pitaya) wine and a mixed-fruit wine that contains watermelon (Citrullus lanatus), mint (Mintha spicata), and pitaya (Hylocereus costaricensis). In this study, fresh pitaya, watermelon, and mint leaves were fermented using Saccharomyces cerevisiae. Juice extracts underwent fermentation at room temperature for 7 days under dark conditions. Physicochemical changes, such as pH, sugar content, specific gravity, and alcohol content, were observed daily. The antioxidant activities were measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, the ferric reducing antioxidant power (FRAP) assay, and total phenolic contents (TPCs). After 14 days of fermentation, the alcohol contents of mixed and pitaya wine were 11.22% (v/v) and 11.25%, respectively. The total sugar content of the mixed wine was 8.0 °Brix, while that of pitaya wine was 7.0 °Brix. Moreover, pitaya wine exhibited a higher TPC (22.7 mg GAE/100 g D.W.), and better FRAP (3578 μmole/L) and DPPH scavenging ability (80.2%) compared to the mixed wine with a TPC of 21.4 mg GAE/100 g D.W., FRAP of 2528 μmole/L, and DPPH of 75.6%., while the addition of watermelon and mint did not change the alcohol percentage contents of wine.
Collapse
Affiliation(s)
- Tsung‐Ming Hu
- Department of PsychiatryYuli BranchTaipei Veterans General HospitalHualienTaiwan
| | - Mohsen Gavahian
- Department of Food ScienceCollege of AgricultureNational Pingtung University of Science and TechnologyPingtungTaiwan
| | - Rojina Pradhan
- Department of Food ScienceCollege of AgricultureNational Pingtung University of Science and TechnologyPingtungTaiwan
| | - Si‐Yu Lu
- Department of Food ScienceCollege of AgricultureNational Pingtung University of Science and TechnologyPingtungTaiwan
| | - Yung‐Lin Chu
- Department of Food ScienceCollege of AgricultureNational Pingtung University of Science and TechnologyPingtungTaiwan
| |
Collapse
|
10
|
Liu C, Ma R, Tian Y. An overview of the nutritional profile, processing technologies, and health benefits of quinoa with an emphasis on impacts of processing. Crit Rev Food Sci Nutr 2022; 64:5533-5550. [PMID: 36510748 DOI: 10.1080/10408398.2022.2155796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Consumers are becoming increasingly conscious of adopting a healthy lifestyle and demanding food with high nutritional values. Quinoa (Chenopodium quinoa Willd.) has attracted considerable attention and is consumed worldwide in the form of a variety of whole and processed products owing to its excellent nutritional features, including richness in micronutrients and bioactive phytochemicals, well-balanced amino acids composition, and gluten-free properties. Recent studies have indicated that the diverse utilization and final product quality of this pseudo-grain are closely related to the processing technologies used, which can result in variations in nutritional profiles and health benefits. This review comprehensively summarizes the nutritional properties, processing technologies, and potential health benefits of quinoa, suggesting that quinoa plays a promising role in enhancing the nutrition of processed food. In particular, the effects of different processing technologies on the nutritional profile and health benefits of quinoa are highlighted, which can provide a foundation for the updating and upgrading of the quinoa processing industry. It further discusses the present quinoa-based food products containing quinoa as partial or whole substitute for traditional grains.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
The Effects of Processing Technologies on Nutritional and Anti-nutritional Properties of Pseudocereals and Minor Cereal. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Tolpeznikaite E, Starkute V, Zokaityte E, Ruzauskas M, Pilkaityte R, Viskelis P, Urbonaviciene D, Ruibys R, Rocha JM, Bartkiene E. Effect of solid-state fermentation and ultrasonication processes on antimicrobial and antioxidant properties of algae extracts. Front Nutr 2022; 9:990274. [PMID: 36091232 PMCID: PMC9453264 DOI: 10.3389/fnut.2022.990274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Algal biomass (AB) is prospective source of valuable compounds, however, Baltic Sea macroalgae have some challenges, because of their high microbial and chemical contamination. These problems can be solved, by using appropriate technologies for AG pre-treatment. The aim of this study was to evaluate the influence of two pre-treatments, solid-state fermentation with the Lactiplantibacillus plantarum LUHS135 and ultrasonication, on the antioxidant and antimicrobial characteristics of macro- (Cladophora rupestris, Cladophora glomerata, Furcellaria lumbricalis, Ulva intestinalis) and Spirulina (Arthrospira platensis) extracts. Also, combinations of extracts and LUHS135 were developed and their characteristics were evaluated. The total phenolic compound content was determined from the calibration curve and expressed in mg of gallic acid equivalents; antioxidant activity was measured by a Trolox equivalent antioxidant capacity assay using the DPPH• (1,1-diphenyl-2-picrylhydrazyl), ABTS•+ 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), FRAP (Ferric Reducing Ability of Plasma) discoloration methods. Antimicrobial activity was measured by using agar well diffusion assay and in a liquid medium. The highest DPPH• and ABTS•+ was shown by C.rupestris and F.lumbricalis extract × LUHS135 combinations, the highest FRAP - by non-pretreated C.rupestris and F.lumbricalis extract × LUHS135 combinations. Ultrasonicated samples inhibited four out of seven tested pathogens. Finally, the tested pre-treatments showed good perspectives and can be recommended for AB valorization.
Collapse
Affiliation(s)
- Ernesta Tolpeznikaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Modestas Ruzauskas
- Department of Anatomy and Physiology, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Microbiology and Virology, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Pranas Viskelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Lithuania
| | - Dalia Urbonaviciene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Lithuania
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences, Vytautas Magnus University, Agriculture Academy, Kaunas, Lithuania
| | - João M. Rocha
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania
- *Correspondence: Elena Bartkiene
| |
Collapse
|
13
|
Development of Functional Fermented Dairy Products Containing Taiwan Djulis (Chenopodium formosanum Koidz.) in Regulating Glucose Utilization. FERMENTATION 2022. [DOI: 10.3390/fermentation8090423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Taiwan djulis (Chenopodium formosanum Koidz.) is a plant native to Taiwan and is a grain rich in nutrients, vitamins, and minerals with antioxidant properties. This paper aimed to use appropriate processing technology and incorporate probiotics, thus combining Taiwan’s high-quality milk sources to develop Taiwan djulis fermented dairy products. Later, FL83B cells have used to evaluate the glucose utilization ability after the administration of djulis. We first screened Lactiplantibacillus plantarum and combined it with the traditional yogurt strains Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus for cultivation. Further, the fermentation process was optimized where 7.5% djulis and an inoculum of 107 colony forming unit/mL were fermented at 40 °C for 18 h. Compared to fermented milk without djulis, the analysis of various nutrients and active ingredients showed that free radical scavenging abilities of DPPH and ABTS reached 2.3 and 2.0 times (752.35 ± 29.29 µg and 771.52 ± 3.79 µg TE/g, respectively). The free phenol content increased 2.5 times (169.90 ± 14.59 mg gallic acid/g); the total flavonoid content enhanced 4.8 times (3.05 ± 0.03 mg quercetin/g), and the gamma-aminobutyric acid content was 3.07 ± 0.94 mg/g. In a co-culture of mouse liver cells with fermented products, 100 ppm ethanol extract of fermented products effectively improved glucose utilization with increased glucose transporter expression. This functional fermented dairy product can be developed into the high value added local agricultural products and enhance multiple applications including medical and therapeutic fields.
Collapse
|
14
|
Paucar-Menacho LM, Castillo-Martínez WE, Simpalo-Lopez WD, Verona-Ruiz A, Lavado-Cruz A, Martínez-Villaluenga C, Peñas E, Frias J, Schmiele M. Performance of Thermoplastic Extrusion, Germination, Fermentation, and Hydrolysis Techniques on Phenolic Compounds in Cereals and Pseudocereals. Foods 2022; 11:foods11131957. [PMID: 35804772 PMCID: PMC9265478 DOI: 10.3390/foods11131957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/17/2022] Open
Abstract
Bioactive compounds, such as phenolic compounds, are phytochemicals found in significant amounts in cereals and pseudocereals and are usually evaluated by spectrophotometric (UV-VIS), HPLC, and LC-MS techniques. However, their bioavailability in grains is quite limited. This restriction on bioavailability and bioaccessibility occurs because they are in conjugated polymeric forms. Additionally, they can be linked through chemical esterification and etherification to macro components. Techniques such as thermoplastic extrusion, germination, fermentation, and hydrolysis have been widely studied to release phenolic compounds in favor of their bioavailability and bioaccessibility, minimizing the loss of these thermosensitive components during processing. The increased availability of phenolic compounds increases the antioxidant capacity and favor their documented health promoting.
Collapse
Affiliation(s)
- Luz María Paucar-Menacho
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Williams Esteward Castillo-Martínez
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Wilson Daniel Simpalo-Lopez
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Anggie Verona-Ruiz
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Alicia Lavado-Cruz
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (C.M.-V.); (E.P.) (J.F.)
| | - Elena Peñas
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (C.M.-V.); (E.P.) (J.F.)
| | - Juana Frias
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (C.M.-V.); (E.P.) (J.F.)
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), MGT-367 Highway-Km 583, No. 5000, Diamantina 39100-000, Brazil
- Correspondence: ; Tel.: +55-38988037758
| |
Collapse
|
15
|
Hernández‐García Y, Melgar‐Lalanne G, Téllez‐Medina DI, Ruiz‐May E, Salgado‐Cruz MDLP, Andrade‐Velásquez A, Dorantes‐Álvarez L, López‐Hernández D, Santiago Gómez MP. Scavenging peptides, antioxidant activity, and hypoglycemic activity of a germinated amaranth (
Amaranthus hypochondriacus
L.) beverage fermented by
Lactiplantibacillus plantarum. J Food Biochem 2022; 46:e14139. [DOI: 10.1111/jfbc.14139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Yazmín Hernández‐García
- Departamento Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional México City Mexico
| | | | - Darío Iker Téllez‐Medina
- Departamento Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional México City Mexico
| | - Eliel Ruiz‐May
- Red de Estudios Moleculares Avanzados Instituto de Ecología A.C. Clúster Científico y Tecnologico BioMimic® Veracruz Mexico
| | - Ma. de la Paz Salgado‐Cruz
- Departamento Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional México City Mexico
| | - Amaury Andrade‐Velásquez
- Departamento Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional México City Mexico
| | - Lidia Dorantes‐Álvarez
- Departamento Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional México City Mexico
| | | | | |
Collapse
|
16
|
Modelling and Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Black Quinoa by Response Surface Methodology. Molecules 2021; 26:molecules26123616. [PMID: 34204777 PMCID: PMC8231643 DOI: 10.3390/molecules26123616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Phenolic compounds are currently the most investigated class of functional components in quinoa. However, great variability in their content emerged, because of differences in sample intrinsic and extrinsic characteristics; processing-induced factors; as well as extraction procedures applied. This study aimed to optimize phenolic compound extraction conditions in black quinoa seeds by Response Surface Methodology. An ultrasound-assisted extraction was performed with two different mixtures; and the effect of time; temperature; and sample-to-solvent ratio on total phenolic content (TPC) was investigated. Data were fitted to a second-order polynomial model. Multiple regression analysis and analysis of variance were used to determine the fitness of the model and optimal conditions for TPC. Three-dimensional surface plots were generated from the mathematical models. TPC at optimal conditions was 280.25 ± 3.94 mg of Gallic Acid Equivalent (GAE) 100 g−1 dm upon extraction with aqueous methanol/acetone, and 236.37 ± 5.26 mg GAE 100 g−1 dm with aqueous ethanol mixture. The phenolic profile of extracts obtained at optimal conditions was also investigated by HPLC. The two extracting procedures did not show different specificities for phenolic compounds but differed in the extraction yield.
Collapse
|