1
|
Sarkar P, Bandyopadhyay TK, Gopikrishna K, Nath Tiwari O, Bhunia B, Muthuraj M. Algal carbohydrates: Sources, biosynthetic pathway, production, and applications. BIORESOURCE TECHNOLOGY 2024; 413:131489. [PMID: 39278363 DOI: 10.1016/j.biortech.2024.131489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Algae play a significant role in the global carbon cycle by utilizing photosynthesis to efficiently convert solar energy and atmospheric carbon dioxide into various chemical compounds, notably carbohydrates, pigments, lipids, and released oxygen, making them a unique sustainable cellular factory. Algae mostly consist of carbohydrates, which include a broad variety of structures that contribute to their distinct physical and chemical properties such as degree of polymerization, side chain, branching, degree of sulfation, hydrogen bond etc., these features play a crucial role in regulating many biological activity, nutritional and pharmaceutical properties. Algal carbohydrates have not received enough attention in spite of their distinctive structural traits linked to certain biological and physicochemical properties. Nevertheless, it is anticipated that there will be a significant increase in the near future due to increasing demand, sustainable source, biofuel generation and their bioactivity. This is facilitated by the abundance of easily accessible information on the structural data and distinctive characteristics of these biopolymers. This review delves into the different types of saccharides such as agar, alginate, fucoidan, carrageenan, ulvan, EPS and glucans synthesized by various macroalgal and microalgal systems, which include intracellular, extracellular and cell wall saccharides. Their structure, biosynthetic pathway, sources, production strategies and their applications in various field such as nutraceuticals, pharmaceuticals, biomedicine, food and feed, cosmetics, and bioenergy are also elaborately discussed. Algal polysaccharide has huge a scope for exploitation in future due to their application in food and pharmaceutical industry and it can become a huge source of capital and income.
Collapse
Affiliation(s)
- Pradip Sarkar
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India
| | | | - Konga Gopikrishna
- SEED Division, Department of Science and Technology, Government of India, New Delhi 110 016, India.
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India.
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
2
|
Wang H, Zhu B. Directed preparation of algal oligosaccharides with specific structures by algal polysaccharide degrading enzymes. Int J Biol Macromol 2024; 277:134093. [PMID: 39053825 DOI: 10.1016/j.ijbiomac.2024.134093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Seaweed polysaccharides have a wide range of sources and rich content, with various biological activities such as anti-inflammatory, anti-tumor, anticoagulant, and blood pressure lowering. They can be applied in fields such as food, agriculture, and medicine. However, the poor solubility of macromolecular seaweed polysaccharides limits their further application. Reports have shown that some biological activities of seaweed oligosaccharides are more extensive and superior to that of seaweed polysaccharides. Therefore, reducing the degree of polymerization of polysaccharides will be the key to the high value utilization of seaweed polysaccharide resources. There are three main methods for degrading algal polysaccharides into algal oligosaccharides, physical, chemical and enzymatic degradation. Among them, enzymatic degradation has been a hot research topic in recent years. Various types of algal polysaccharide hydrolases and related glycosidases are powerful tools for the preparation of algal oligosaccharides, including α-agarases, β-agaroses, α-neoagarose hydrolases and β-galactosidases that are related to agar, κ-carrageenases, ι-carrageenases and λ-carrageenases that are related to carrageenan, β-porphyranases that are related to porphyran, funoran hydrolases that are related to funoran, alginate lyases that are related to alginate and ulvan lyases related to ulvan. This paper describes the bioactivities of agar oligosaccharide, carrageenan oligosaccharide, porphyran oligosaccharide, funoran oligosaccharide, alginate oligosaccharide and ulvan oligosaccharide and provides a detailed review of the progress of research on the enzymatic preparation of these six oligosaccharides. At the same time, the problems and challenges faced are presented to guide and improve the preparation and application of algal oligosaccharides in the future.
Collapse
Affiliation(s)
- Hui Wang
- College of Food Science and Light Industry, Nanjing Tech University, 211086, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, 211086, China.
| |
Collapse
|
3
|
Pan-Utai W, Settachaimongkon S, La-Ongkham O, Pornpukdeewattana S, Hamwane M, Lorpeunge C, Adame M, Yodbumprenge C. Physicochemical, Nutritional, and Antioxidant Properties of Traditionally Fermented Thai Vegetables: A Promising Functional Plant-Based Food. Foods 2024; 13:2848. [PMID: 39272613 PMCID: PMC11395234 DOI: 10.3390/foods13172848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Fermented plant-based products were gathered from various regions in Thailand and categorized into 10 types of traditional commercial vegetables. Different vegetable materials and natural fermentation methods influence the diverse physical, chemical, nutritional, and functional attributes of the products. All the traditionally fermented Thai vegetable samples collected showed physicochemical properties associated with the fermentation process, contributing to the nutritional and functional quality of the final products. Achieving consistent research results is challenging due to the intricate nature of food matrices and biochemical processes during fermentation. The roles of microorganisms, especially probiotics, are crucial in delivering health benefits through fermented foods. Traditionally fermented Thai vegetable foods contain high levels of total soluble solids, titratable acidity, and salinity in pickled shallot and ginger as a result of the natural fermentation process and the ingredients used. The research findings were confirmed using a hierarchical cluster analysis (HCA)-derived dendrogram pattern. The nutritional compositions, total phenolic contents, and antioxidant activities varied among the different types of vegetables. The correlations among lipid, protein, fiber, total soluble solid (TSSs), total titratable acidity (TTA), and salinity as potential biomarkers in fermented vegetable products were examined. The results suggest that traditionally fermented Thai vegetable products significantly impacted food research by enhancing the quality and preserving the authenticity of traditionally fermented Thai vegetables.
Collapse
Affiliation(s)
- Wanida Pan-Utai
- Department of Applied Microbiology, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Orawan La-Ongkham
- Department of Applied Microbiology, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand
| | | | - Marisa Hamwane
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Chalantorn Lorpeunge
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Masnavee Adame
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Charisa Yodbumprenge
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
4
|
Khan IU, Aqsa A, Jamil Y, Khan N, Iqbal A, Ali S, Hamayun M, Alrefaei AF, Faraj TK, Lee B, Ahmad A. Anti-Oxidative and Anti-Apoptotic Oligosaccharides from Pichia pastoris-Fermented Cress Polysaccharides Ameliorate Chromium-Induced Liver Toxicity. Pharmaceuticals (Basel) 2024; 17:958. [PMID: 39065806 PMCID: PMC11280323 DOI: 10.3390/ph17070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Oxidative stress impairs the structure and function of the cell, leading to serious chronic diseases. Antioxidant-based therapeutic and nutritional interventions are usually employed for combating oxidative stress-related disorders, including apoptosis. Here, we investigated the hepatoprotective effect of oligosaccharides, produced through Pichia pastoris-mediated fermentation of water-soluble polysaccharides isolated from Lepidium sativum (cress) seed mucilage, on chromium(VI)-induced oxidative stress and apoptosis in mice. Gel permeation chromatography (GPC), using Bio-Gel P-10 column, of the oligosaccharides product of fermentation revealed that P. pastoris effectively fermented polysaccharides as no long chain polysaccharides were observed. At 200 µg/mL, fractions DF73, DF53, DF72, and DF62 exhibited DPPH radical scavenging activity of 92.22 ± 2.69%, 90.35 ± 0.43%, 88.83 ± 3.36%, and 88.83 ± 3.36%, respectively. The antioxidant potential of the fermentation product was further confirmed through in vitro H2O2 radical scavenging assay. Among the screened samples, the highest H2O2 radical scavenging activity was displayed by DF73, which stabilized the free radicals by 88.83 ± 0.38%, followed by DF53 (86.48 ± 0.83%), DF62 (85.21 ± 6.66%), DF72 (79.9 4± 1.21%), and EPP (77.76 ± 0.53%). The oligosaccharide treatment significantly alleviated chromium-induced liver damage, as evident from the increase in weight gain, improved liver functions, and reduced histopathological alterations in the albino mice. A distinctly increased level of lipid peroxide (LPO) free radicals along with the endogenous hepatic enzymes were evident in chromium induced hepatotoxicity in mice. However, oligosaccharides treatment mitigated these effects by reducing the LPO production and increasing ALT, ALP, and AST levels, probably due to relieving the oxidative stress. DNA fragmentation assays illustrated that Cr(VI) exposure induced massive apoptosis in liver by damaging the DNA which was then remediated by oligosaccharides supplementation. Histopathological observations confirmed that the oligosaccharide treatment reverses the architectural changes in liver induced by chromium. These results suggest that oligosaccharides obtained from cress seed mucilage polysaccharides through P. pastoris fermentation ameliorate the oxidative stress and apoptosis and act as hepatoprotective agent against chromium-induced liver injury.
Collapse
Affiliation(s)
- Imdad Ullah Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (I.U.K.); (A.A.); (Y.J.); (N.K.)
| | - Aqsa Aqsa
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (I.U.K.); (A.A.); (Y.J.); (N.K.)
| | - Yusra Jamil
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (I.U.K.); (A.A.); (Y.J.); (N.K.)
| | - Naveed Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (I.U.K.); (A.A.); (Y.J.); (N.K.)
| | - Amjad Iqbal
- Department of Food Science and Technology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | | | - Turki Kh. Faraj
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, Riyadh 145111, Saudi Arabia;
| | - Bokyung Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (I.U.K.); (A.A.); (Y.J.); (N.K.)
| |
Collapse
|
5
|
Zhou T, Li X. Chemically modified seaweed polysaccharides: Improved functional and biological properties and prospective in food applications. Compr Rev Food Sci Food Saf 2024; 23:e13396. [PMID: 38925601 DOI: 10.1111/1541-4337.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Seaweed polysaccharides are natural biomacromolecules with unique physicochemical properties (e.g., good gelling, emulsifying, and film-forming properties) and diverse biological activities (e.g., anticoagulant, antioxidant, immunoregulatory, and antitumor effects). Furthermore, they are nontoxic, biocompatible and biodegradable, and abundant in resources. Therefore, they have been widely utilized in food, cosmetics, and pharmaceutical industries. However, their properties and bioactivities sometimes are not satisfactory for some purposes. Modification of polysaccharides can impart the amphiphilicity and new functions to the biopolymers and change the structure and conformation, thus effectively improving their functional properties and biological activities so as to meet the requirement for targeted applications. This review outlined the modification methods of representative red algae polysaccharides (carrageenan and agar), brown algae polysaccharides (fucoidan, alginate, and laminaran), and green algae polysaccharides (ulvan) that have potential food applications, including etherification, esterification, degradation, sulfation, phosphorylation, selenylation, and so on. The improved functional properties and bioactivities of the modified seaweed polysaccharides and their potential food applications are also summarized.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Xinyue Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
6
|
Bouzenad N, Ammouchi N, Chaib N, Messaoudi M, Bousabaa W, Bensouici C, Sawicka B, Atanassova M, Ahmad SF, Zahnit W. Exploring Bioactive Components and Assessing Antioxidant and Antibacterial Activities in Five Seaweed Extracts from the Northeastern Coast of Algeria. Mar Drugs 2024; 22:273. [PMID: 38921584 PMCID: PMC11205126 DOI: 10.3390/md22060273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The main goal of this study was to assess the bioactive and polysaccharide compositions, along with the antioxidant and antibacterial potentials, of five seaweeds collected from the northeastern coast of Algeria. Through Fourier transform infrared spectroscopy analysis and X-ray fluorescence spectroscopy, the study investigated the elemental composition of these seaweeds and their chemical structure. In addition, this study compared and identified the biochemical makeup of the collected seaweed by using cutting-edge methods like tandem mass spectrometry and ultra-high-performance liquid chromatography, and it searched for new sources of nutritionally valuable compounds. According to the study's findings, Sargassum muticum contains the highest levels of extractable bioactive compounds, showing a phenolic compound content of 235.67 ± 1.13 µg GAE·mg-1 and a total sugar content of 46.43 ± 0.12% DW. Both S. muticum and Dictyota dichotoma have high concentrations of good polyphenols, such as vanillin and chrysin. Another characteristic that sets brown algae apart is their composition. It showed that Cladophora laetevirens has an extracted bioactive compound content of 12.07% and a high capacity to scavenge ABTS+ radicals with a value of 78.65 ± 0.96 µg·mL-1, indicating high antioxidant activity. In terms of antibacterial activity, S. muticum seaweed showed excellent growth inhibition. In conclusion, all five species of seaweed under investigation exhibited unique strengths, highlighting the variety of advantageous characteristics of these seaweeds, especially S. muticum.
Collapse
Affiliation(s)
- Nawal Bouzenad
- Department of Process Engineering, Faculty of Technology, University 20 August 1955, Skikda 21000, Algeria
- Laboratory of Interactions, Biodiversity, Ecosystems and Biotechnology (LIBEB), University 20 August 1955, Skikda 21000, Algeria
| | - Nesrine Ammouchi
- Department of Sciences and Technology, Faculty of Technology, University 20 August 1955, Skikda 21000, Algeria;
- Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces (LRPCSI), University 20 August 1955, Skikda 21000, Algeria
| | - Nadjla Chaib
- Department of Process Engineering, Faculty of Technology, University 20 August 1955, Skikda 21000, Algeria
- Laboratory of Catalysis, Bioprocesses and Environment (LCBE), University 20 August 1955, Skikda 21000, Algeria
| | | | - Walid Bousabaa
- Scientific and Technical Research Center in Physico-Chemical Analysis (CRAPC), BP384, Bou-Ismail 42004, Algeria;
| | - Chawki Bensouici
- Laboratory of Biochemistry, Biotechnology and Health Division, Center for Research in Biotechnology, Constantine 25000, Algeria;
| | - Barbara Sawicka
- Department of Plant Production Technology and Commoditties Science, University of Life Sciences in Lublin, Akademicka 15 Str., 20-950 Lublin, Poland;
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria;
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wafa Zahnit
- Laboratory of Valorization and Promotion of Saharan Resource (VPRS), Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, Ouargla 30000, Algeria
| |
Collapse
|
7
|
Jagtap AS, Manohar CS, Kadam NS. Relationship between dietary fiber content and prebiotic potential of polysaccharides from the seaweeds of the North west coast of India. Int J Biol Macromol 2024; 269:132225. [PMID: 38729460 DOI: 10.1016/j.ijbiomac.2024.132225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
The macroalgae are a sustainable bioresource that can be harnessed for their functional food and nutraceutical applications. This study characterized the biochemical composition and bioactive potential of natural biological macromolecules, such as macroalgal polysaccharides extracted using a green, aqueous extraction process. The in-vitro antioxidant and antiglycemic activity of these polysaccharides were evaluated using model, free radical and antiglycemic compounds. The prebiotic potential of macroalgal polysaccharides were analysed based on their ability to promote the growth of two potential probiotic bacteria Lactobacillus acidophilus and L. bulgaricus and suppress the growth of enteric bacteria, Escherichia coli. Among the polysaccharides studied, the brown algal polysaccharide MPS8 MPS9 and MPS10 exhibited good antioxidant, antiglycemic and prebiotic activity. Based on infrared spectroscopy, the functional groups sulfation and carboxylation were identified in potential polysaccharides. The monosaccharide composition in the bioactive polysaccharides was determined using High Performance Anion Exchange Chromatography Pulse Amperometric detector (HPAEC-PAD). These bioactive polysaccharides were fractionated using ion exchange chromatography to purify it and further characterized using gel permeation chromatography and NMR spectroscopy. The results these polysaccharides are mainly composed of fucose and glucose which is due to the fucoidan and laminarin, respectively. Such macromolecules with high dietary fiber content and bioactivity are in global demand as functional food, nutraceutical and pharmaceutical formulations.
Collapse
Affiliation(s)
- Ashok S Jagtap
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama, Goa 403804, India; Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India.
| | - Cathrine S Manohar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Nitin S Kadam
- Central Instrumentation Facility, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
8
|
Phomkaivon N, Pongponpai P, Kosawatpat P, Thongdang B, Pan-utai W. Extraction, Characterisation and Evaluation of Antioxidant and Probiotic Growth Potential of Water-Soluble Polysaccharides from Ulva rigida Macroalgae. Foods 2024; 13:1630. [PMID: 38890859 PMCID: PMC11171798 DOI: 10.3390/foods13111630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Ulva rigida green macroalgae contain a variety of polysaccharides. A recent study investigated the optimum concentration and yield of polysaccharide extraction from oven-dried U. rigida biomass using a water-soluble polysaccharide extraction method that adhered to safety standards. This study utilised complete factorial experiments to examine the effects of varying factors on polysaccharide extraction. Results showed a positive correlation between increased levels of all factors and higher polysaccharide extraction yield. This study also found that the main factors and their interaction had a significant impact on the extracted polysaccharides from U. rigida. The highest polysaccharide content and yield were 9.5 mg/mL and 189 mg/g, respectively. Water-soluble polysaccharides demonstrated the presence of reducing sugar (8 mg/g), phenolics (0.69 mg/g) and flavonoids (1.42 mg/g) and exhibited antioxidant properties. Results revealed that freeze-dried polysaccharide powders were primarily composed of the monosaccharide rhamnose. Preliminary results on the effect of these powders on probiotics demonstrated that supplementation of polysaccharides from U. rigida promoted viable Lactobacillus rhamnosus ATCC 53103 growth during cultivation. This discovery has the potential to revolutionise the human food industry and promote the development of functional ingredients for novel and future food products, with numerous applications in the nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Naraporn Phomkaivon
- Department of Food Chemistry and Physics, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand;
| | | | - Prapat Kosawatpat
- Phetchaburi Coastal Aquaculture Research and Development Center, Coastal Aquaculture Research and Development Division, Department of Fisheries, Phetchaburi 76100, Thailand; (P.K.); (B.T.)
| | - Bussaba Thongdang
- Phetchaburi Coastal Aquaculture Research and Development Center, Coastal Aquaculture Research and Development Division, Department of Fisheries, Phetchaburi 76100, Thailand; (P.K.); (B.T.)
| | - Wanida Pan-utai
- Department of Applied Microbiology, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
9
|
Komisarska P, Pinyosinwat A, Saleem M, Szczuko M. Carrageenan as a Potential Factor of Inflammatory Bowel Diseases. Nutrients 2024; 16:1367. [PMID: 38732613 PMCID: PMC11085445 DOI: 10.3390/nu16091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Carrageenan is a widely used food additive and is seen as a potential candidate in the pharmaceutical industry. However, there are two faces to carrageenan that allows it to be used positively for therapeutic purposes. Carrageenan can be used to create edible films and for encapsulating drugs, and there is also interest in the use of carrageenan for food printing. Carrageenan is a naturally occurring polysaccharide gum. Depending on the type of carrageenan, it is used in regulating the composition of intestinal microflora, including the increase in the population of Bifidobacterium bacteria. On the other hand, the studies have demonstrated the harmfulness of carrageenan in animal and human models, indicating a direct link between diet and intestinal inflammatory states. Carrageenan changes the intestinal microflora, especially Akkermansia muciniphilia, degrades the mucous barrier and breaks down the mucous barrier, causing an inflammatory reaction. It directly affects epithelial cells by activating the pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway. The mechanism is based on activation of the TLR4 receptor, alterations in macrophage activity, production of proinflammatory cytokines and activation of innate immune pathways. Carrageenan increases the content of Bacteroidetes bacteria, also causing a reduction in the number of short chain fatty acid (SCFA)-producing bacteria. The result is damage to the integrity of the intestinal membrane and reduction of the mucin layer. The group most exposed to the harmful effects of carrageenan are people suffering from intestinal inflammation, including Crohn disease (CD) and ulcerative colitis (UC).
Collapse
Affiliation(s)
| | | | | | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland (M.S.)
| |
Collapse
|
10
|
Binsuwaidan R, El-Masry TA, El-Sheekh M, Seadawy MG, Makhlof MEM, Aboukhatwa SM, El-Shitany NA, Elmorshedy KE, El-Nagar MMF, El-Bouseary MM. Prospective Antiviral Effect of Ulva lactuca Aqueous Extract against COVID-19 Infection. Mar Drugs 2023; 22:30. [PMID: 38248655 PMCID: PMC10817659 DOI: 10.3390/md22010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Marine algal extracts exhibit a potent inhibitory effect against several enveloped and non-enveloped viruses. The infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has several adverse effects, including an increased mortality rate. The anti-COVID-19 agents are still limited; this issue requires exploring novel, effective anti-SARS-CoV-2 therapeutic approaches. This study investigated the antiviral activity of an aqueous extract of Ulva lactuca, which was collected from the Gulf of Suez, Egypt. The aqueous extract of Ulva lactuca was characterized by high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Energy Dispersive X-ray (EDX) analyses. According to the HPLC analysis, the extract comprises several sugars, mostly rhamnose (32.88%). The FTIR spectra showed numerous bands related to the functional groups. EDX analysis confirmed the presence of different elements, such as oxygen (O), carbon (C), sulfur (S), magnesium (Mg), potassium (K), calcium (Ca), and sodium (Na), with different concentrations. The aqueous extract of U. lactuca (0.0312 mg/mL) exhibited potent anti-SARS-CoV-2 activity via virucidal activity, inhibition of viral replication, and interference with viral adsorption (% inhibitions of 64%, 33.3%, and 31.1%, respectively). Consequently, ulvan could be a promising compound for preclinical study in the drug development process to combat SARS-CoV-2.
Collapse
Affiliation(s)
- Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | | | - Mofida E. M. Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt;
| | - Shaimaa M. Aboukhatwa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Nagla A. El-Shitany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | | | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Maisra M. El-Bouseary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
11
|
Praiboon J, Chantorn S, Krangkratok W, Choosuwan P, La-ongkham O. Evaluating the Prebiotic Properties of Agar Oligosaccharides Obtained from the Red Alga Gracilaria fisheri via Enzymatic Hydrolysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3958. [PMID: 38068595 PMCID: PMC10708334 DOI: 10.3390/plants12233958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024]
Abstract
Currently, the demand in the food market for oligosaccharides with biological activities is rapidly increasing. In this study, agar polysaccharides from Gracilaria fisheri were treated with β-agarases and hydrolyzed to agar oligosaccharides (AOSs). High-performance anion-exchange chromatography/pulsed amperometric detection (HPAEC-PAD), Fourier-transform infrared spectroscopy (FT-IR), and gel permeation chromatography (GPC), were employed to analyze the chemical characteristics of AOSs. The FT-IR spectra revealed that the enzymatic hydrolysis had no effect on specific functional groups in the AOS molecule. To investigate the prebiotic and pathogen inhibitory effects of AOSs, the influence of AOSs on the growth of three probiotic and two pathogenic bacteria was examined. The gastrointestinal tolerance of probiotics in the presence of AOSs was also investigated. AOSs enhanced the growth of Lactobacillus plantarum by 254%, and inhibited the growth of Bacillus cereus by 32.80%, and Escherichia coli by 58.94%. The highest survival rates of L. plantarum and L. acidophilus were maintained by AOSs in the presence of α-amylase and HCl under simulated gastrointestinal conditions. This study demonstrates that AOSs from G. fisheri exhibit potential as a prebiotic additive in foods.
Collapse
Affiliation(s)
- Jantana Praiboon
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Sudathip Chantorn
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Pathum Thani 121200, Thailand
| | - Weerada Krangkratok
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Pathum Thani 121200, Thailand
| | - Pradtana Choosuwan
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Orawan La-ongkham
- Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
12
|
Abdella AA, Ulber R, Zayed A. A spectroscopic response factor-based toluidine blue assay towards a universal assay protocol for sulfated polysaccharides: Application to fucoidan content in crude extract. J Pharm Biomed Anal 2023; 235:115616. [PMID: 37540996 DOI: 10.1016/j.jpba.2023.115616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Sulfated polysaccharides (SPS) have attracted a lot of interest because of their diverse pharmacological functions. Numerous scientific studies have shown that SPS exhibit better biological activity than those that are not sulfated, such as immunomodulatory, anti-viral, and antioxidant activities. A crucial step to a better understanding of the mechanism of action and health effects is the production of high purity SPS. This calls for the development of selective assay techniques that can identify SPS preferentially without being influenced by other substances or the co-extracted polysaccharides. A universal modified toluidine blue (TB) assay was developed in this study to detect SPS. The assay procedures were conducted using different SPS standards including fucoidans from different biogenic sources, in addition to heparin and dextran sulfate. Spectroscopic response factor was calculated for each SPS which showed very good correlation (R2 = 0.998) with the corresponding sulfation degree. The proposed method was applied for determination of SPS content of crude fucoidan product using five different SPS standards. The method was cross validated by conducting ANOVA test to the obtained % recovery revealing that there is no significant difference between the results obtained by identical reference standard and four nonidentical natural SPS standards. This is the first report of a selective universal assay of SPS that enables the selective determination of SPS using a nonidentical reference standard.
Collapse
Affiliation(s)
- Aya A Abdella
- Department of Pharmaceutical Analytical Chemistry, College of Pharmacy, Tanta University, Elguish street (Medical Campus), 31527 Tanta, Egypt
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| | - Ahmed Zayed
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany; Department of Pharmacognosy, College of Pharmacy, Tanta University, Elguish street (Medical Campus), 31527 Tanta, Egypt.
| |
Collapse
|
13
|
Krishna Perumal P, Dong CD, Chauhan AS, Anisha GS, Kadri MS, Chen CW, Singhania RR, Patel AK. Advances in oligosaccharides production from algal sources and potential applications. Biotechnol Adv 2023; 67:108195. [PMID: 37315876 DOI: 10.1016/j.biotechadv.2023.108195] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
In recent years, algal-derived glycans and oligosaccharides have become increasingly important in health applications due to higher bioactivities than plant-derived oligosaccharides. The marine organisms have complex, and highly branched glycans and more reactive groups to elicit greater bioactivities. However, complex and large molecules have limited use in broad commercial applications due to dissolution limitations. In comparison to these, oligosaccharides show better solubility and retain their bioactivities, hence, offering better applications opportunity. Accordingly, efforts are being made to develop a cost-effective method for enzymatic extraction of oligosaccharides from algal polysaccharides and algal biomass. Yet detailed structural characterization of algal-derived glycans is required to produce and characterize the potential biomolecules for improved bioactivity and commercial applications. Some macroalgae and microalgae are being evaluated as in vivo biofactories for efficient clinical trials, which could be very helpful in understanding the therapeutic responses. This review discusses the recent advancements in the production of oligosaccharides from microalgae. It also discusses the bottlenecks of the oligosaccharides research, technological limitations, and probable solutions to these problems. Furthermore, it presents the emerging bioactivities of algal oligosaccharides and their promising potential for possible biotherapeutic application.
Collapse
Affiliation(s)
- Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City-804201, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| |
Collapse
|
14
|
Liyanage NM, Nagahawatta DP, Jayawardena TU, Jeon YJ. The Role of Seaweed Polysaccharides in Gastrointestinal Health: Protective Effect against Inflammatory Bowel Disease. Life (Basel) 2023; 13:life13041026. [PMID: 37109555 PMCID: PMC10143107 DOI: 10.3390/life13041026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a prominent global public health issue. Anti-inflammatory medications, immunosuppressants, and biological therapies are currently used as treatments. However, they are often unsuccessful and have negative consequences on human health. Thus, there is a tremendous demand for using natural substances, such as seaweed polysaccharides, to treat IBD's main pathologic treatment targets. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae, and fucoidan in brown algae. These are effective candidates for drug development and functional nutrition products. Algal polysaccharides treat IBD through therapeutic targets, including inflammatory cytokines, adhesion molecules, intestinal epithelial cells, and intestinal microflora. This study aimed to systematically review the potential therapeutic effects of algal polysaccharides on IBD while providing the theoretical basis for a nutritional preventive mechanism for IBD and the restoration of intestinal health. The results suggest that algal polysaccharides have significant potential in complementary IBD therapy and further research is needed for fully understanding their mechanisms of action and potential clinical applications.
Collapse
Affiliation(s)
- N M Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - D P Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Thilina U Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| |
Collapse
|
15
|
An Insight into the Essential Role of Carbohydrate-Binding Modules in Enzymolysis of Xanthan. Int J Mol Sci 2023; 24:ijms24065480. [PMID: 36982553 PMCID: PMC10049358 DOI: 10.3390/ijms24065480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
To date, due to the low accessibility of enzymes to xanthan substrates, the enzymolysis of xanthan remains deficient, which hinders the industrial production of functional oligoxanthan. To enhance the enzymatic affinity against xanthan, the essential role of two carbohydrate binding modules—MiCBMx and PspCBM84, respectively, derived from Microbacterium sp. XT11 and Paenibacillus sp. 62047—in catalytic properties of endotype xanthanase MiXen were investigated for the first time. Basic characterizations and kinetic parameters of different recombinants revealed that, compared with MiCBMx, PspCBM84 dramatically increased the thermostability of endotype xanthanase, and endowed the enzyme with higher substrate affinity and catalytic efficiency. Notably, the activity of endotype xanthanase was increased by 16 times after being fused with PspCBM84. In addition, the presence of both CBMs obviously enabled endotype xanthanase to produce more oligoxanthan, and xanthan digests prepared by MiXen-CBM84 showed better antioxidant activity due to the higher content of active oligosaccharides. The results of this work lay a foundation for the rational design of endotype xanthanase and the industrial production of oligoxanthan in the future.
Collapse
|
16
|
Fuso A, Dejonghe W, Cauwenberghs L, Rosso G, Rosso F, Manera I, Caligiani A. DPPH radical scavenging activity of xylo-oligosaccharides mixtures of controlled composition: A step forward in understanding structure–activity relationship. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
17
|
Monitoring the Aroma Compound Profiles in the Microbial Fermentation of Seaweeds and Their Effects on Sensory Perception. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Seaweeds have a variety of biological activities, and their aromatic characteristics could play an important role in consumer acceptance. Here, changes in aroma compounds were monitored during microbial fermentation, and those most likely to affect sensory perception were identified. Ulva sp. and Laminaria sp. were fermented and generally recognized as safe microorganisms, and the profile of volatile compounds in the fermented seaweeds was investigated using headspace solid-phase microextraction with gas chromatography–mass spectrometry. Volatile compounds, including ketones, aldehydes, alcohols, and acids, were identified during seaweed fermentation. Compared with lactic acid bacteria fermentation, Bacillus subtilis fermentation could enhance the total ketone amount in seaweeds. Saccharomyces cerevisiae fermentation could also enhance the alcohol content in seaweeds. Principal component analysis of volatile compounds revealed that fermenting seaweeds with B. subtilis or S. cerevisiae could reduce aldehyde contents and boost ketone and alcohol contents, respectively, as expected. The odor of the fermented seaweeds was described by using GC–olfactometry, and B. subtilis and S. cerevisiae fermentations could enhance pleasant odors and reduce unpleasant odors. These results can support the capability of fermentation to improve the aromatic profile of seaweeds.
Collapse
|
18
|
Sulfated Polysaccharides from Macroalgae-A Simple Roadmap for Chemical Characterization. Polymers (Basel) 2023; 15:polym15020399. [PMID: 36679279 PMCID: PMC9861475 DOI: 10.3390/polym15020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
The marine environment presents itself as a treasure chest, full of a vast diversity of organisms yet to be explored. Among these organisms, macroalgae stand out as a major source of natural products due to their nature as primary producers and relevance in the sustainability of marine ecosystems. Sulfated polysaccharides (SPs) are a group of polymers biosynthesized by macroalgae, making up part of their cell wall composition. Such compounds are characterized by the presence of sulfate groups and a great structural diversity among the different classes of macroalgae, providing interesting biotechnological and therapeutical applications. However, due to the high complexity of these macromolecules, their chemical characterization is a huge challenge, driving the use of complementary physicochemical techniques to achieve an accurate structural elucidation. This review compiles the reports (2016-2021) of state-of-the-art methodologies used in the chemical characterization of macroalgae SPs aiming to provide, in a simple way, a key tool for researchers focused on the structural elucidation of these important marine macromolecules.
Collapse
|
19
|
Jagtap AS, Parab AS, Manohar CS, Kadam NS. Prebiotic potential of enzymatically produced ulvan oligosaccharides using ulvan lyase of Bacillus subtilis, NIOA181, a macroalgae-associated bacteria. J Appl Microbiol 2022; 133:3176-3190. [PMID: 35957555 DOI: 10.1111/jam.15775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
AIMS To characterize the polysaccharide hydrolyzing potential of macroalgae-associated bacteria (MABs) for enzymatic production of oligosaccharides and determining their prebiotic potential. METHODS AND RESULTS Approximately 400 MABs were qualitatively characterised for polysaccharide hydrolyzing activity. Only about 5 to 15% of the isolates were found to have the potential for producing porphyranase, alginate lyase and ulvan lyase enzymes which were quantified in specific substrate broths. One potential MAB, Bacillus subtilis, NIOA181, isolated from green macroalgae, showed the highest ulvan lyase activity. This enzyme was partially purified and used to hydrolyse ulvan into ulvan oligosaccharides. Structural characterization of ulvan oligosaccharides showed that they are predominantly composed of di-, tri-, and tetrasaccharide units. Results showed that the enzymatically produced ulvan oligosaccharides exhibited prebiotic activity by promoting the growth of probiotic bacteria and suppressing the enteric pathogens, which were higher than the ulvan polysaccharide and equivalent to commercial fructooligosaccharides. CONCLUSIONS A potential MAB, NIOA181, producing ulvan lyase was isolated and used for the production of ulvan oligosaccharides with prebiotic activity. SIGNIFICANCE AND IMPACT OF STUDY Rarely studied ulvan oligosaccharides with prebiotic activity can be widely used as an active pharmaceutical ingredient in nutraceutical and other healthcare applications.
Collapse
Affiliation(s)
- Ashok S Jagtap
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, India.,School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa, India
| | - Ashutosh S Parab
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, India.,School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa, India
| | - Cathrine S Manohar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Nitin S Kadam
- Central Instrumentation Facility, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
20
|
Permatasari HK, Nurkolis F, Barazani H, Satria P, Prima EN, Alfaien PAR, Choirunnisa NL, Kumalawati DA, Solihah J, Pramesti DI, Bolang A. Stability Evaluation of Caulerpa racemosa as Novel Halal Capsule-Shell. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: The capsule shell is generally made from mammalian gelatin; according to Europe gelatine manufacturers of Europe, about 80% of the base material of the capsule shell comes from pork skin and 15% from cow skin. This raises a great deal of concern in the community, especially on the religious aspect. Muslims are prohibited from consuming anything made from pork, while Hindus are forbidden from consuming anything made from beef. To reduce public concern, an alternative medicine shell made from natural ingredients is necessary.
AIM: This study aims to discover the potential of a new medicinal shell, which is made from the stem of sea grapes (Caulerpa racemosa).
METHODS: This laboratory experimental study used a completely randomized design with three treatment variations, namely, the ratio between the volume of chitosan and tripolyphosphate in Sample 1 (V1) was 2:1, Sample 2 (V2) was 3.5:1, and Sample 3 (V3) is 5:1. Each sample was replicated 3 times (triples) and used the analytical method of the association of official analytical chemists. The dough is then printed on capsules of size O (300–500 mg; 0.5 g).
RESULTS: The results obtained are the particle size, polydispersity index, and zeta potential of V1, V2, and V3 that are significantly different (p < 0.0001, p = 0.0004, and p < 0.0001) based on the one-way Analysis of variance test.
CONCLUSION: From these results, the V3 nanocapsule variant is the best variant and has the potential to be an alternative to drug capsule shells.
Collapse
|
21
|
Marine microbial enzymes for the production of algal oligosaccharides and its bioactive potential for application as nutritional supplements. Folia Microbiol (Praha) 2022; 67:175-191. [PMID: 34997524 DOI: 10.1007/s12223-021-00943-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/20/2021] [Indexed: 01/02/2023]
Abstract
Marine macroalgae have a very high carbohydrate content due to complex algal polysaccharides (APS) like agar, alginate, and ulvan in their cell wall. Despite numerous reports on their biomedical properties, their hydrocolloid nature limits their applications. Algal oligosaccharides (AOS), which are hydrolyzed forms of complex APS, are gaining importance due to their low molecular weight, biocompatibility, bioactivities, safety, and solubility in water that makes it a lucrative alternative. The AOS produced through enzymatic hydrolysis using microbial enzymes have far-reaching applications because of its stereospecific nature. Identification and characterization of novel microorganisms producing APS hydrolyzing enzymes are the major bottlenecks for the efficient production of AOS. This review will discuss the marine microbial enzymes identified for AOS production and the bioactive potential of enzymatically produced AOS. This can improve our understanding of the biotechnological potential of microbial enzymes for the production of AOS and facilitate the sustainable utilization of algal biomass. Enzymatically produced AOS are shown to have bioactivities such as antioxidant, antiglycemic, prebiotic, immunomodulation, antiobesity or antihypercholesterolemia, anti-inflammatory, anticancer, and antimicrobial activity. The myriad of health benefits provided by the AOS is the need of the hour as there is an alarming increase in physiological disorders among a wide range of the global population.
Collapse
|
22
|
Seaweeds as a Fermentation Substrate: A Challenge for the Food Processing Industry. Processes (Basel) 2021. [DOI: 10.3390/pr9111953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Seaweeds are gaining momentum as novel and functional food and feed products. From whole consumption to small bioactive compounds, seaweeds have remarkable flexibility in their applicability, ranging from food production to fertilizers or usages in chemical industries. Regarding food production, there is an increasing interest in the development of novel foods that, at the same time, present high nutritious content and are sustainably developed. Seaweeds, because they require no arable land, no usage of fresh water, and they have high nutritious and bioactive content, can be further explored for the development of newer and functional food products. Fermentation, especially performed by lactic acid bacteria, is a method used to produce functional foods. However, fermentation of seaweed biomass remains an underdeveloped topic that nevertheless demonstrates high potential for the production of new alimentary products that hold and further improve the organoleptic and beneficial properties that these organisms are characterized for. Although further research has to be deployed in this field, the prebiotic and probiotic potential demonstrated by fermented seaweed can boost the development of new functional foods.
Collapse
|
23
|
Pangestuti R, Haq M, Rahmadi P, Chun BS. Nutritional Value and Biofunctionalities of Two Edible Green Seaweeds ( Ulva lactuca and Caulerpa racemosa) from Indonesia by Subcritical Water Hydrolysis. Mar Drugs 2021; 19:md19100578. [PMID: 34677477 PMCID: PMC8537507 DOI: 10.3390/md19100578] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Caulerpa racemosa (sea grapes) and Ulva lactuca (sea lettuces) are edible green seaweeds and good sources of bioactive compounds for future foods, nutraceuticals and cosmeceutical industries. In the present study, we determined nutritional values and investigated the recovery of bioactive compounds from C. racemosa and U. lactuca using hot water extraction (HWE) and subcritical water extraction (SWE) at different extraction temperatures (110 to 230 °C). Besides significantly higher extraction yield, SWE processes also give higher protein, sugar, total phenolic (TPC), saponin (TSC), flavonoid contents (TFC) and antioxidant activities as compared to the conventional HWE process. When SWE process was applied, the highest TPC, TSC and TFC values were obtained from U. lactuca hydrolyzed at reaction temperature 230 °C with the value of 39.82 ± 0.32 GAE mg/g, 13.22 ± 0.33 DE mg/g and 6.5 ± 0.47 QE mg/g, respectively. In addition, it also showed the highest antioxidant activity with values of 5.45 ± 0.11 ascorbic acid equivalents (AAE) mg/g and 8.03 ± 0.06 trolox equivalents (TE) mg/g for ABTS and total antioxidant, respectively. The highest phenolic acids in U. lactuca were gallic acid and vanillic acid. Cytotoxic assays demonstrated that C. racemosa and U. lactuca hydrolysates obtained by HWE and SWE did not show any toxic effect on RAW 264.7 cells at tested concentrations after 24 h and 48 h of treatment (p < 0.05), suggesting that both hydrolysates were safe and non-toxic for application in foods, cosmeceuticals and nutraceuticals products. In addition, the results of this study demonstrated the potential of SWE for the production of high-quality seaweed hydrolysates. Collectively, this study shows the potential of under-exploited tropical green seaweed resources as potential antioxidants in nutraceutical and cosmeceutical products.
Collapse
Affiliation(s)
- Ratih Pangestuti
- Research & Development Divisions for Marine Bio Industry (BBIL), National Research and Innovation Agency (BRIN), North Lombok 83352, Indonesia
- Correspondence: (R.P.); (B.-S.C.); Tel.: +82-51-629-5830 (B.-S.C.)
| | - Monjurul Haq
- Department of Fisheries & Marine Bioscience, Jashore University of Science & Technology, Jashore 7408, Bangladesh;
| | - Puji Rahmadi
- Research Center for Oceanography, National Research and Innovation Agency (BRIN), Jakarta 14430, Indonesia;
| | - Byung-Soo Chun
- Department of Food Science & Technology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Korea
- Correspondence: (R.P.); (B.-S.C.); Tel.: +82-51-629-5830 (B.-S.C.)
| |
Collapse
|