1
|
Antoun K, Tabib M, Salameh SJ, Koubaa M, Ziegler-Devin I, Brosse N, Khelfa A. Isolation and Structural Characterization of Natural Deep Eutectic Solvent Lignin from Brewer's Spent Grains. Polymers (Basel) 2024; 16:2791. [PMID: 39408501 PMCID: PMC11478345 DOI: 10.3390/polym16192791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Brewer's spent grains (BSG) offer valuable opportunities for valorization beyond its conventional use as animal feed. Among its components, lignin-a natural polymer with inherent antioxidant properties-holds significant industrial potential. This work investigates the use of microwave-assisted extraction combined with acidic natural deep eutectic solvents (NaDESs) for efficient lignin recovery, evaluating three different NaDES formulations. The results indicate that choline chloride-lactic acid (ChCl-LA), a NaDES with superior thermal stability as confirmed via thermogravimetric analysis (TGA), is an ideal solvent for lignin extraction at 150 °C and 15 min, achieving a balance of high yield and quality. ChCl-LA also demonstrated good solubility and cell disruption capabilities, while microwaves significantly reduced processing time and severity. Under optimal conditions, i.e., 150 °C, 15 min, in the presence of ChCl-LA NaDES, the extracted lignin achieved a purity of up to 79% and demonstrated an IC50 (inhibitory concentration 50%) of approximately 0.022 mg/L, indicating a relatively strong antioxidant activity. Fourier transform infrared (FTIR) and 2D-HSQC NMR (heteronuclear single quantum coherence nuclear magnetic resonance) spectroscopy confirmed the successful isolation and preservation of its structural integrity. This study highlights the potential of BSG as a valuable lignocellulosic resource and underscores the effectiveness of acidic NaDESs combined with microwave extraction for lignin recovery.
Collapse
Affiliation(s)
- Karina Antoun
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319, 60 203 Compiègne, Cedex, France (M.T.); (S.J.S.); (M.K.)
| | - Malak Tabib
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319, 60 203 Compiègne, Cedex, France (M.T.); (S.J.S.); (M.K.)
| | - Sarah Joe Salameh
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319, 60 203 Compiègne, Cedex, France (M.T.); (S.J.S.); (M.K.)
| | - Mohamed Koubaa
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319, 60 203 Compiègne, Cedex, France (M.T.); (S.J.S.); (M.K.)
| | - Isabelle Ziegler-Devin
- Laboratoire d’Etude et de Recherche sur le Matériau Bois (LERMAB), Faculté des Sciences et Technologies, Université de Lorraine, 54 500 Vandœuvre-lès-Nancy, France; (I.Z.-D.); (N.B.)
| | - Nicolas Brosse
- Laboratoire d’Etude et de Recherche sur le Matériau Bois (LERMAB), Faculté des Sciences et Technologies, Université de Lorraine, 54 500 Vandœuvre-lès-Nancy, France; (I.Z.-D.); (N.B.)
| | - Anissa Khelfa
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319, 60 203 Compiègne, Cedex, France (M.T.); (S.J.S.); (M.K.)
| |
Collapse
|
2
|
Bellinetto E, Fumagalli N, Astorri M, Turri S, Griffini G. Elucidating the Role of Lignin Type and Functionality in the Development of High-Performance Biobased Phenolic Thermoset Resins. ACS APPLIED POLYMER MATERIALS 2024; 6:1191-1203. [PMID: 38299121 PMCID: PMC10825815 DOI: 10.1021/acsapm.3c02136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
In this work, a series of biobased phenolic resins were developed starting from kraft and soda lignin, suitably functionalized through esterification by means of succinic anhydride. As a result of an extensive optimization study of the functionalization and curing reactions, clear correlations between lignin type and chemical-physical characteristics and the properties of the resulting phenolic resin systems were described. In particular, the esterification reaction through succinic anhydride was found to play a key role in enhancing the chemical reactivity and in facilitating the successful incorporation of lignin into the resin formulations. The obtained high-lignin-content thermoset materials were shown to exhibit tunable chemical (functionality, gel content, and cross-linking density), thermal (glass transition temperature and thermo-oxidative stability), and mechanical (surface hardness, indentation modulus, and creep behavior) characteristics, which could outperform those of fully oil-based reference phenolic resins by judicious control of lignin concentration and chemical characteristics. In particular, succinylated kraft lignin was found to enable more efficient incorporation into the cured systems. This work provides the first demonstration of the incorporation of succinic-anhydride-modified-lignin in the formulation of high-performance phenolic resins, ultimately contributing to the definition of structure-property-performance correlations for rational biobased material design in the context of advanced and sustainable manufacturing.
Collapse
Affiliation(s)
- Emanuela Bellinetto
- Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonoardo da Vinci 32, 20133 Milano, Italy
| | - Nicholas Fumagalli
- Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonoardo da Vinci 32, 20133 Milano, Italy
| | - Matilde Astorri
- Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonoardo da Vinci 32, 20133 Milano, Italy
| | - Stefano Turri
- Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonoardo da Vinci 32, 20133 Milano, Italy
| | - Gianmarco Griffini
- Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonoardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
3
|
D’Arrigo P, Rossato LAM, Strini A, Serra S. From Waste to Value: Recent Insights into Producing Vanillin from Lignin. Molecules 2024; 29:442. [PMID: 38257355 PMCID: PMC10818928 DOI: 10.3390/molecules29020442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Vanillin, one of the most widely used and appreciated flavoring agents worldwide, is the main constituent of vanilla bean extract, obtained from the seed pods of various members belonging to the Orchidaceae family. Due to the great demand in the food confectionery industry, as well as in the perfume industry, medicine, and more, the majority of vanillin used today is produced synthetically, and only less than one percent of the world's vanilla flavoring market comes directly from the traditional natural sources. The increasing global demand for vanillin requires alternative and overall sustainable new production methods, and the recovery from biobased polymers, like lignin, is an environmentally friendly alternative to chemical synthesis. The present review provides firstly an overview of the different types of vanillin, followed by a description of the main differences between natural and synthetic vanillin, their preparation, the market of interest, and the authentication issues and the related analytical techniques. Then, the review explores the real potentialities of lignin for vanillin production, presenting firstly the well-assessed classical methods and moving towards the most recent promising approaches through chemical, biotechnological and photocatalytic methodologies, together with the challenges and the principal issues associated with each technique.
Collapse
Affiliation(s)
- Paola D’Arrigo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milan, Italy
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche (SCITEC-CNR), via Luigi Mancinelli 7, 20131 Milan, Italy;
| | - Letizia A. M. Rossato
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Alberto Strini
- Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche (ITC-CNR), via Lombardia 49, 20098 San Giuliano Milanese, Italy;
| | - Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche (SCITEC-CNR), via Luigi Mancinelli 7, 20131 Milan, Italy;
| |
Collapse
|
4
|
Rossi L, Wechsler L, Peltzer MA, Ciannamea EM, Ruseckaite RA, Stefani PM. Sustainable Particleboards Based on Brewer's Spent Grains. Polymers (Basel) 2023; 16:59. [PMID: 38201724 PMCID: PMC10780620 DOI: 10.3390/polym16010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Brewer's spent grain (BSG) is the main solid waste generated in beer production and primarily consists of barley malt husks. Based on the active promotion of circular economy practices aimed at recycling food industry by-products, this study assessed for the first time the production of particleboards based on BSG as the sole source of lignocellulosic material and natural adhesive without the use of additives or other substrates. In order to achieve particleboards from entirely sustainable sources, BSG particles have to self-bind by thermo-compression with water. In this context, the aim of this study is to assess the effects of pressing temperatures and particle size on properties such as modulus of elasticity, modulus of rupture, internal bond, thickness swelling, and water absorption. The performance of binderless boards was compared with that of a control panel (control) using BSG combined with phenolic resin. Processing conditions were selected to produce boards with a target density of 1000 kg/m³ and a thickness of 5 mm. To confirm the efficiency of the self-adhesion process, scanning electron microscopy was used to examine the boards. The processes of self-adhesion and particle-to-particle contact were facilitated at a pressing temperature of 170 °C and a particle size range of 200-2380 µm (ground BSG), resulting in improved flexural properties and enhanced water resistance. The properties of BSG-based binderless boards were comparable to those reported for other biomass residues, suggesting that they might be used in non-structural applications, such as interior decoration.
Collapse
Affiliation(s)
- Lucia Rossi
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Av. Colón 10850, Mar del Plata B7600FDQ, Argentina; (L.R.); (L.W.); (E.M.C.); (R.A.R.)
| | - Lucia Wechsler
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Av. Colón 10850, Mar del Plata B7600FDQ, Argentina; (L.R.); (L.W.); (E.M.C.); (R.A.R.)
| | - Mercedes A. Peltzer
- Departamento de Ciencia y Tecnología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Argentina;
| | - Emiliano M. Ciannamea
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Av. Colón 10850, Mar del Plata B7600FDQ, Argentina; (L.R.); (L.W.); (E.M.C.); (R.A.R.)
| | - Roxana A. Ruseckaite
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Av. Colón 10850, Mar del Plata B7600FDQ, Argentina; (L.R.); (L.W.); (E.M.C.); (R.A.R.)
| | - Pablo M. Stefani
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Av. Colón 10850, Mar del Plata B7600FDQ, Argentina; (L.R.); (L.W.); (E.M.C.); (R.A.R.)
| |
Collapse
|
5
|
Valorization of Food Waste Slurry as Potential Candidate for Lipid Accumulation: A Concept of Oleaginous Bio-Refinery. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In the current state of huge waste production and energy crisis, there is a need to find additional alternate energy resources and options for waste management. The present study was designed to measure the potential of different fruit wastes to serve as substrate for lipid accumulation in oleaginous bacteria. For this purpose, three novel bacterial strains (AF3, KM1 and KM10) isolated from the crude oil samples were systematically compared for their lipid accumulation potential using three types of waste including orange waste (OW), mango waste (MW) and apple waste (AW). Using waste as sole substrate, it was observed that maximum lipid accumulation by each strain was above 20%, which confirms that the bacteria belong to the oleaginous group. However, each bacterial isolate represented differential accumulative capacity with varying organic matter removal efficiency. Maximum lipid accumulation was achieved by KM10 (>25%) with AW as substrate, and KM1 (>24%) with MW as substrate; however, AF3 represented only 21% lipid accumulation using AW as substrate. Similarly, the maximum removal efficiency was recorded for KM10 in AW, followed by OW, where >60% and >50% of volatile solids (VS) removal, respectively, were achieved over the period of 7 days of incubation. This showed that the oleaginous strains also exhibit excellent waste treatment efficiency. The 16s RNA gene sequencing results showed that these KM1 and KM10 strains were Serratia surfactantfaciens and Serratia liquefaciens. In the end, a circular economy model was presented to highlight the significance of the mechanisms, which offers dual benefits over the linear economy model. Overall, the findings of the present study revealed that the novel oleaginous strains not only provide considerable lipid accumulation, but are simultaneously capable of low-cost waste treatment.
Collapse
|
6
|
Allegretti C, D'Arrigo P, Gatti FG, Rossato LAM, Ruffini E. Dependence of 1H-NMR T 1 relaxation time of trimethylglycine betaine deep eutectic solvents on the molar composition and on the presence of water. RSC Adv 2023; 13:3004-3007. [PMID: 36756439 PMCID: PMC9850698 DOI: 10.1039/d2ra08082f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
1H-NMR spin lattice relaxation times (T 1), measured by inversion recovery technique, allowed to establish the stoichiometric coefficient (ratio between the H-bond acceptor and H-bond donor) of a series of trimethylglycine betaine/diol based deep eutectic solvents (DESs); ethylene glycol, triethylene glycol and 1,3-propandiol were selected as H-bond donors. The maximum amount of water tolerated by the DES, before its complete hydration, was determined as well. Finally, the method was validated comparing the eutectic composition of the betaine/glycol system with that determined by means of differential scanning calorimetry analysis; the stoichiometric coefficients were identical.
Collapse
Affiliation(s)
- Chiara Allegretti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano P.zza Leonardo da Vinci 32 Milano 20133 Italy
| | - Paola D'Arrigo
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano P.zza Leonardo da Vinci 32 Milano 20133 Italy .,Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - Consiglio Nazionale delle Ricerche (SCITEC-CNR) Via Luigi Mancinelli 7 Milano 20131 Italy
| | - Francesco G. Gatti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di MilanoP.zza Leonardo da Vinci 32Milano20133Italy
| | - Letizia A. M. Rossato
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di MilanoP.zza Leonardo da Vinci 32Milano20133Italy
| | - Eleonora Ruffini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano P.zza Leonardo da Vinci 32 Milano 20133 Italy
| |
Collapse
|
7
|
Allegretti C, Bellinetto E, D’Arrigo P, Ferro M, Griffini G, Rossato LAM, Ruffini E, Schiavi L, Serra S, Strini A, Turri S. Fractionation of Raw and Parboiled Rice Husks with Deep Eutectic Solvents and Characterization of the Extracted Lignins towards a Circular Economy Perspective. Molecules 2022; 27:8879. [PMID: 36558011 PMCID: PMC9785053 DOI: 10.3390/molecules27248879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
In the present work, rice husks (RHs), which, worldwide, represent one of the most abundant agricultural wastes in terms of their quantity, have been treated and fractionated in order to allow for their complete valorization. RHs coming from the raw and parboiled rice production have been submitted at first to a hydrothermal pretreatment followed by a deep eutectic solvent fractionation, allowing for the separation of the different components by means of an environmentally friendly process. The lignins obtained from raw and parboiled RHs have been thoroughly characterized and showed similar physico-chemical characteristics, indicating that the parboiling process does not introduce obvious lignin alterations. In addition, a preliminary evaluation of the potentiality of such lignin fractions as precursors of cement water reducers has provided encouraging results. A fermentation-based optional preprocess has also been investigated. However, both raw and parboiled RHs demonstrated a poor performance as a microbiological growth substrate, even in submerged fermentation using cellulose-degrading fungi. The described methodology appears to be a promising strategy for the valorization of these important waste biomasses coming from the rice industry towards a circular economy perspective.
Collapse
Affiliation(s)
- Chiara Allegretti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Emanuela Bellinetto
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Paola D’Arrigo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Monica Ferro
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Gianmarco Griffini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Letizia Anna Maria Rossato
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Eleonora Ruffini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| | - Luca Schiavi
- Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche (ITC-CNR), Via Lombardia 49, 20098 San Giuliano Milanese, Italy
| | - Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche (SCITEC-CNR), Via Luigi Mancinelli 7, 20131 Milano, Italy
| | - Alberto Strini
- Istituto per le Tecnologie della Costruzione, Consiglio Nazionale delle Ricerche (ITC-CNR), Via Lombardia 49, 20098 San Giuliano Milanese, Italy
| | - Stefano Turri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, p.zza L. da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
8
|
Zeko-Pivač A, Bošnjaković A, Planinić M, Parlov Vuković J, Novak P, Jednačak T, Tišma M. Improvement of the Nutraceutical Profile of Brewer's Spent Grain after Treatment with Trametes versicolor. Microorganisms 2022; 10:2295. [PMID: 36422365 PMCID: PMC9693169 DOI: 10.3390/microorganisms10112295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/21/2023] Open
Abstract
Brewer's spent grain (BSG) is an important secondary raw material that provides a readily available natural source of nutraceuticals. It finds its largest application as animal feed and part of the human diet, while the future perspective predicts an application in the production of value-added products. In order to investigate a sustainable BSG treatment method, two BSG samples (BSG1 and BSG2) were evaluated as substrates for the production of hydrolytic (xylanase, β-glucosidase and cellulase) and lignolytic enzymes (laccase, manganese peroxidase and lignin peroxidase) by solid-state fermentation (SSF) with Trametes versicolor while improving BSG nutritional value. The biological treatment was successful for the production of all hydrolytic enzymes and laccase and manganese peroxidase, while it was unsuccessful for the production of lignin peroxidase. Because the two BSGs were chemically different, the Trametes versicolor enzymes were synthesized at different fermentation times and had different activities. Consequently, the chemical composition of the two BSG samples at the end of fermentation was also different. The biological treatment had a positive effect on the increase in protein content, ash content, polyphenolic compounds, and sugars in BSG1. In BSG2, there was a decrease in the content of reducing sugars. Cellulose, hemicellulose, and lignin were degraded in BSG1, whereas only cellulose was degraded in BSG2, and the content of hemicellulose and lignin increased. The fat content decreased in both samples. The safety-related correctness analysis showed that the biologically treated sample did not contain any harmful components and was therefore safe for use in nutritionally enriched animal feed.
Collapse
Affiliation(s)
- Anđela Zeko-Pivač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Anja Bošnjaković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | | | - Predrag Novak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Tomislav Jednačak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Marina Tišma
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| |
Collapse
|
9
|
Brewer’s Spent Grain Biochar: Grinding Method Matters. Mol Vis 2022. [DOI: 10.3390/c8030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present work is based on the principle of biomass waste valorization. Brewer’s spent grains (BSG) come from breweries as by-products. Their huge amount of production on an industrial scale should focus our attention on their valorization, which creates challenges as well as opportunities. One way to valorize BSG by-products is to convert them into biochar, a functional material with multiple potential applications. With an emphasis on sustainable development and the circular economy, in this work, we focused on a comparative study of the different mechanical processes of BSG grinding and their effect on the resulting biochar formed after pyrolysis. Home appliances such as blenders, coffee mills, and mortar and pestles were used for this purpose. FESEM images confirmed the successful creation of five different morphologies from the same BSG under the same pyrolysis conditions. Interestingly, a novel Chinese tea leaf egg-like biochar was also formed. It was found that a series of physical pretreatments of the biomass resulted in the reduced roughness of the biochar surface, i.e., they became smoother, thus negatively affecting the quality of the biochar. XRD revealed that the biomass physical treatments were also reflected in the crystallinity of some biochar. Via a Raman study, we witnessed the effect of mechanical pressure on the biomass for affecting the biochar features through pressure-induced modifications of the biomass’s internal structure. This induced enhanced biochar graphitization. This is a good example of the role of mechanochemistry. DSC revealed the thermochemical transformation of the five samples to be exothermic reactions. This study opens up an interesting possibility for the synthesis of biochar with controlled morphology, crystallinity, degree of graphitization, and heat capacity.
Collapse
|
10
|
Fărcaș AC, Socaci SA, Chiș MS, Martínez-Monzó J, García-Segovia P, Becze A, Török AI, Cadar O, Coldea TE, Igual M. In Vitro Digestibility of Minerals and B Group Vitamins from Different Brewers' Spent Grains. Nutrients 2022; 14:3512. [PMID: 36079770 PMCID: PMC9460495 DOI: 10.3390/nu14173512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Brewers' spent grain (BSG), the main by-product of the brewing industry, is a rich source of minerals and water-soluble vitamins such as thiamine, pyridoxine, niacin, and cobalamin. Bioaccessibility through in vitro digestion is an important step toward the complete absorption of minerals and B group vitamins in the gastrointestinal system. Inductively coupled plasma optical emission spectrometry (ICP-OES) together with inductively coupled plasma quadrupole mass spectrometry (ICP-MS) was used for the quantification of the macro- and micro-minerals. An ultra-high performance liquid chromatography (UHPLC) system coupled with a diode array detector (DAD) was used for B group vitamin identification. Four different industrial BSG samples were used in the present study, with different percentages of malted cereals such as barley, wheat, and degermed corn. Calcium's bioaccessibility was higher in the BSG4 sample composed of 50% malted barley and 50% malted wheat (16.03%), while iron presented the highest bioaccessibility value in the BSG2 sample (30.03%) composed of 65% Pale Ale malt and 35% Vienna malt. On the other hand, vitamin B1 had the highest bioaccessibility value (72.45%) in the BSG3 sample, whilst B6 registered the lowest bioaccessibility value (16.47%) in the BSG2 sample. Therefore, measuring the bioaccessibilty of bioactive BSG compounds before their further use is crucial in assessing their bioavailability.
Collapse
Affiliation(s)
- Anca Corina Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Maria Simona Chiș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Javier Martínez-Monzó
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Purificación García-Segovia
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Anca Becze
- National Institute for Research and Development of Optoelectronics INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Anamaria Iulia Török
- National Institute for Research and Development of Optoelectronics INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Oana Cadar
- National Institute for Research and Development of Optoelectronics INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Marta Igual
- Food Investigation and Innovation Group, Food Technology Department, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|