1
|
Aneck-Hahn NH, Van Zijl MC, Quinn L, Swiegelaar C, Nhlapo N, de Bruin W, Korsten L. The use of in vitro bioassays and chemical screening to assess the impact of a minimally processed vegetable facility on wastewater quality. FRONTIERS IN TOXICOLOGY 2024; 6:1439126. [PMID: 39350794 PMCID: PMC11439871 DOI: 10.3389/ftox.2024.1439126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Fruit- and vegetable-processing facilities may contaminate wastewater via contaminants found in the produce and disinfecting chemicals used. These contaminants may include agrochemicals, pesticides, and disinfectants such as chlorine and quaternary ammonium compounds (QACs). Some compounds may exhibit harmful endocrine-disrupting activity. This study investigated the impact of a minimally processed vegetable facility on wastewater quality via in vitro bioassays and chemical screening. Estrogen activity was assessed via a yeast estrogen screen (YES), and (anti-)androgenic and glucocorticoid activities were evaluated via an MDA-kb2 reporter gene assay. The samples were screened via gas and liquid chromatography-tandem mass spectrometry (GC-MS/MS and LC-MS/MS) to identify target compounds, and GC coupled with time-of-flight mass spectrometry (GC-TOFMS) was used for non-targeted screening. Sample complexity and chemical profiles were assessed using GC-TOFMS. Estrogenic activity was detected in 16 samples (n = 24) with an upper limit of 595 ± 37 ng/L estradiol equivalents (EEqs). The final wastewater before discharge had an EEq of 0.23 ng/L, which is within the ecological effect-based trigger value range for the estrogenic activity of wastewater (0.2-0.4 ng/L EEq). Androgenic activity was detected in one sample with a dihydrotestosterone equivalent (DHTEq) value of 10 ± 2.7 ng/L. No antiandrogenic activity was detected. The GC-MS/MS and LC-MS/MS results indicated the presence of multiple pesticides, nonylphenols, triclocarban, and triclosan. Many of these compounds exhibit estrogenic activity, which may explain the positive YES assay findings. These findings showed that wastewater from the facility contained detergents, disinfectants, and pesticides and displayed hormonal activity. Food-processing facilities release large volumes of wastewater, which may affect the quality of the water eventually being discharged into the environment. We recommend expanding conventional water quality monitoring efforts to include additional factors like endocrine activity and disinfectant byproducts.
Collapse
Affiliation(s)
- N H Aneck-Hahn
- Environmental Chemical Pollution and Health Research Unit, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - M C Van Zijl
- Environmental Chemical Pollution and Health Research Unit, Department of Urology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - L Quinn
- Organic Analysis Laboratory, National Metrology Institute of South Africa, Pretoria, South Africa
| | - C Swiegelaar
- Organic Analysis Laboratory, National Metrology Institute of South Africa, Pretoria, South Africa
| | - N Nhlapo
- Organic Analysis Laboratory, National Metrology Institute of South Africa, Pretoria, South Africa
| | - W de Bruin
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - L Korsten
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Fundneider-Kale S, Kerres J, Engelhart M. Impact of benzalkonium chloride on anaerobic granules and its long-term effects on reactor performance. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135183. [PMID: 39024763 DOI: 10.1016/j.jhazmat.2024.135183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
This study assessed the inhibitory and performance-degrading effects induced by the cationic surfactant benzalkonium chloride (BAC) on anaerobic granules during the long-term operation of a laboratory-scale expanded granular sludge bed (EGSB) reactor. To address the critical scientific problem of how BAC affects the efficiency of EGSB reactors, this research uniquely evaluated the long-term stress response to BAC by systematically comparing continuous and discontinuous inhibitor exposure scenarios. The novel comparison demonstrated that inhibitor concentration is of minor relevance compared to the biomass-specific cumulative inhibitor load in the reactor. After exceeding a critical biomass-specific cumulative inhibitor load of 6.1-6.5 mg BAC/g VS, continuous and discontinuous exposure to BAC caused comparable significant deterioration in reactor performance, including accumulation of volatile fatty acids (VFA), decreased removal efficiency, reduced methane production, as well as the wash-out, flotation, and disintegration of anaerobic granules. BAC exposures had a more detrimental effect on methanogenesis than on acidogenesis. Moreover, long-term stress by BAC led to an inhibition of protein production, resulting in a decreased protein-to-polysaccharide ratio of extracellular polymeric substances (EPS) that promoted destabilizing effects on the granules. Finally, hydrogenotrophic methanogenesis was triggered. Reactor performance could not be restored due to the severe loss of granular sludge.
Collapse
Affiliation(s)
- S Fundneider-Kale
- Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Technology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany.
| | - J Kerres
- Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Technology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - M Engelhart
- Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Technology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| |
Collapse
|
3
|
Abdelshafy AM, Neetoo H, Al-Asmari F. Antimicrobial Activity of Hydrogen Peroxide for Application in Food Safety and COVID-19 Mitigation: An Updated Review. J Food Prot 2024; 87:100306. [PMID: 38796115 DOI: 10.1016/j.jfp.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Hydrogen peroxide (H2O2) is a well-known agent with a broad-spectrum antimicrobial activity against pathogenic bacteria, fungi, and viruses. It is a colorless liquid and commercially available in aqueous solution over a wide concentration range. It has been extensively used in the food industry by virtue of its strong oxidizing property and its ability to cause cellular oxidative damage in microbial cells. This review comprehensively documents recent research on the antimicrobial activity of H2O2 against organisms of concern for the food industry, as well as its effect against SARS-CoV-2 responsible for the COVID-19 pandemic. In addition, factors affecting the antimicrobial effectiveness of H2O2, different applications of H2O2 as a sanitizer or disinfectant in the food industry as well as safety concerns associated with H2O2 are discussed. Finally, recent efforts in enhancing the antimicrobial efficacy of H2O2 are also outlined.
Collapse
Affiliation(s)
- Asem M Abdelshafy
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Hudaa Neetoo
- Agricultural and Food Science Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius.
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| |
Collapse
|
4
|
Pedreira A, Fernandes S, Simões M, García MR, Vázquez JA. Synergistic Bactericidal Effects of Quaternary Ammonium Compounds with Essential Oil Constituents. Foods 2024; 13:1831. [PMID: 38928773 PMCID: PMC11202425 DOI: 10.3390/foods13121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Antimicrobial tolerance is a significant concern in the food industry, as it poses risks to food safety and public health. To overcome this challenge, synergistic combinations of antimicrobials have emerged as a potential solution. In this study, the combinations of two essential oil constituents (EOCs), namely carvacrol (CAR) and eugenol (EUG), with the quaternary ammonium compounds (QACs) benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC) were evaluated for their antimicrobial effects against Escherichia coli and Bacillus cereus, two common foodborne bacteria. The checkerboard assay was employed to determine the fractional inhibitory concentration index (FICI) and the fractional bactericidal concentration index (FBCI), indicating the presence of bactericidal, but not bacteriostatic, synergy in all QAC-EOC combinations. Bactericidal synergism was clearly supported by Bliss independence analysis. The bactericidal activity of the promising synergistic combinations was further validated by time-kill curves, achieving a >4-log10 reduction of initial bacterial load, which is significant compared to typical industry standards. The combinations containing DDAC showed the highest efficiency, resulting in the eradication of bacterial population in less than 2-4 h. These findings emphasize the importance of considering both bacteriostatic and bactericidal effects when evaluating antimicrobial combinations and the potential of EOC-QAC combinations for sanitization and disinfection in the food industry.
Collapse
Affiliation(s)
- Adrián Pedreira
- Group of Recycling and Valorization of Waste Materials (REVAL), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain;
- Biosystems and Bioprocess Engineering Group (Bio2Eng), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (M.S.)
| | - Susana Fernandes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (M.S.)
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.F.); (M.S.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Míriam R. García
- Biosystems and Bioprocess Engineering Group (Bio2Eng), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain;
| | - José Antonio Vázquez
- Group of Recycling and Valorization of Waste Materials (REVAL), Spanish National Research Council (IIM-CSIC), Rúa Eduardo Cabello 6, 36208 Vigo, Spain;
| |
Collapse
|
5
|
Benzaquen J, Avolio B, Weston J. Biosecurity in the workplace and a QMS during the COVID-19 pandemic: a survey for Peruvian goods companies. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2023; 29:1467-1476. [PMID: 36300648 DOI: 10.1080/10803548.2022.2140931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Objectives. This study analyzes the differences between goods companies with a Standard No. ISO 9001:2015 quality management system (QMS) and those without, in terms of implementation of biosecurity measures during the COVID-19 pandemic. The study shows whether having a QMS helped companies to implement the biosecurity measures required to continue operating during a pandemic. Methods. The sample was composed of 145 Peruvian goods companies. The empirical data were collected through a questionnaire sent to company presidents, general managers and department heads. The questionnaire focused on four biosecurity dimensions in the workplace: protocols, preventive actions, biosecurity processes and risk management. Results. The study found that companies with a QMS (Standard No. ISO 9001:2015) significantly differed from companies without in the implementation of three of the four biosecurity dimensions. Conclusions. This study is useful for academia and companies because it identifies the main differences between certified and non-certified companies, in terms of adoption of biosecurity measures. This study highlights the importance of a QMS to respond to hazardous situations like a global health crisis, but also provides useful information for the strategic decision-making process of companies.
Collapse
Affiliation(s)
- Jorge Benzaquen
- CENTRUM Católica Graduate Business School, Pontificia Universidad Católica del Perú, Peru
| | - Beatrice Avolio
- CENTRUM Católica Graduate Business School, Pontificia Universidad Católica del Perú, Peru
| | - Juan Weston
- CENTRUM Católica Graduate Business School, Pontificia Universidad Católica del Perú, Peru
| |
Collapse
|
6
|
Yang H, Hu J, Tan BK, Wong KH, Huang JJ, Cheung PC, Lin S. Lesson learned from COVID-19 pandemic for the future of food industry. Heliyon 2023; 9:e22479. [PMID: 38045130 PMCID: PMC10689951 DOI: 10.1016/j.heliyon.2023.e22479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
With WHO announcing COVID-19 no longer as a public health emergency of international concern (PHEIC) on May 5, 2023, coupled with the fact that the majority of the countries of the world have dropped strict city lockdown or border closure, this perhaps signals the end of the COVID-19 crisis caused by the SARS-CoV-2 virus. However, the COVID-19 pandemic has resulted in far-reaching effects affecting nearly every aspect of our lives and society. Notably, the food industry including agriculture, food manufacturers, food logistics, distributors and retailers have all felt the profound impact and had experienced significant stress during the pandemic. Therefore, it is essential to retrospect the lessons that can be learned from this pandemic for the food industry. This short review aims to address the food safety issues related to the COVID-19 pandemic by focusing on its foodborne transmission potential, innovations of virus detection strategies suitable for food industry; development of phathogenicaidal methods and devices to inactivate SARS-CoV-2 virus (particularly in industrial scale); and the set-up of related food regulations and guidelines as preventive and control measures for preventing the spread of SARS-CoV-2 virus through the food supply chain during the pandemic. This article may provide useful references for the food industry to minimize the food safety impact of COVID-19 (as well as other respiratory virus) and allows them to better prepare for similar future challenges.
Collapse
Affiliation(s)
- Haoqing Yang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Jiamiao Hu
- Diabetes Research Centre, Leicester General Hospital, Leicester LE5 4PW, United Kingdom
| | - Bee K. Tan
- Diabetes Research Centre, Leicester General Hospital, Leicester LE5 4PW, United Kingdom
| | - Ka-hing Wong
- Department of Applied Biology and Chemical Technology, The Hongkong Polytechnic University, Hongkong SAR, China
| | - Jim Junhui Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Republic of Singapore
| | - Peter C.K. Cheung
- Food Research Centre, School of Life Sciences, The Chinese University of Hongkong, Hongkong SAR, China
| | - Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| |
Collapse
|
7
|
Morris JN, Esseili MA. The Effect of Water Hardness and pH on the Efficacy of Peracetic Acid and Sodium Hypochlorite against SARS-CoV-2 on Food-Contact Surfaces. Foods 2023; 12:2981. [PMID: 37627980 PMCID: PMC10453873 DOI: 10.3390/foods12162981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Sodium hypochlorite (NaOCl) and peracetic acid (PAA) are commonly used disinfectants with a maximum recommended concentration of 200 ppm for food-contact surfaces. The objectives of this study were to assess the effect of pH and water hardness on NaOCl and PAA efficacy against SARS-CoV-2 on stainless steel (SS). The two disinfectants were prepared at 200 ppm in water of hardness 150 or 300 ppm with the final pH adjusted to 5, 6, 7, or 8. Disinfectants were applied to virus-contaminated SS for one minute at room temperature following the ASTM E2197 standard assay. SARS-CoV-2 infectivity was quantified using TCID50 assay on Vero-E6 cells. In general, increasingly hard water decreased the efficacy of NaOCl while increasing the efficacy of PAA. Hard water at 300 ppm significantly increased virus log reduction with PAA at pH 8 by ~1.5 log. The maximum virus log reductions were observed at pH 5 for both NaOCl (~1.2 log) and PAA (~2 log) at 150 and 300 ppm hard water, respectively. In conclusion, PAA performed significantly better than NaOCl with harder water. However, both disinfectants at 200 ppm and one minute were not effective (≤3 log) against SARS-CoV-2 on contaminated food-contact surfaces, which may facilitate the role of these surfaces in virus transmission.
Collapse
Affiliation(s)
| | - Malak A. Esseili
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30223, USA;
| |
Collapse
|
8
|
Pérez-Rodríguez M, López Cabo M, Balsa-Canto E, García MR. Mechanisms of Listeria monocytogenes Disinfection with Benzalkonium Chloride: From Molecular Dynamics to Kinetics of Time-Kill Curves. Int J Mol Sci 2023; 24:12132. [PMID: 37569507 PMCID: PMC10418441 DOI: 10.3390/ijms241512132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Unravelling the mechanisms of action of disinfectants is essential to optimise dosing regimes and minimise the emergence of antimicrobial resistance. In this work, we examined the mechanisms of action of a commonly used disinfectant-benzalkonium chloride (BAC)-over a significant pathogen-L. monocytogenes-in the food industry. For that purpose, we used modelling at multiple scales, from the cell membrane to cell population inactivation. Molecular modelling revealed that the integration of the BAC into the membrane requires three phases: (1) the approaching of BAC to the cellular membrane, (2) the absorption of BAC to its surface, and (3) the integration of the compound into the lipid bilayer, where it remains at least for several nanoseconds, probably destabilising the membrane. We hypothesised that the equilibrium of adsorption, although fast, was limiting for sufficiently large BAC concentrations, and a kinetic model was derived to describe time-kill curves of a large population of cells. The model was tested and validated with time series data of free BAC decay and time-kill curves of L. monocytogenes at different inocula and BAC dose concentrations. The knowledge gained from the molecular simulation plus the proposed kinetic model offers the means to design novel disinfection processes rationally.
Collapse
Affiliation(s)
- Martín Pérez-Rodríguez
- Biosystems & Bioprocess Engineering Group, IIM-CSIC Spanish National Research Council, 36208 Vigo, Spain; (M.P.-R.); (E.B.-C.)
- CINBIO, Applied Physics Department, University of Vigo, 36310 Vigo, Spain
| | - Marta López Cabo
- Microbiology Group, IIM-CSIC Spanish National Research Council, 36208 Vigo, Spain;
| | - Eva Balsa-Canto
- Biosystems & Bioprocess Engineering Group, IIM-CSIC Spanish National Research Council, 36208 Vigo, Spain; (M.P.-R.); (E.B.-C.)
| | - Míriam R. García
- Biosystems & Bioprocess Engineering Group, IIM-CSIC Spanish National Research Council, 36208 Vigo, Spain; (M.P.-R.); (E.B.-C.)
| |
Collapse
|
9
|
Yu H, Zhang J, Zhao Y, Li H, Chen Y, Zhu J. Effects of specific doses of E-beam irradiation which inactivated SARS-CoV-2 on the nutrition and quality of Atlantic salmon. FOOD SCIENCE AND HUMAN WELLNESS 2023; 12:1351-1358. [PMID: 38620800 PMCID: PMC9671704 DOI: 10.1016/j.fshw.2022.10.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The contamination of Atlantic salmon with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impeded the development of the cold-chain food industry and posed possible risks to the population. Electron beam (E-beam) irradiation under 2, 4, 7, and 10 kGy can effectively inactivate SARS-CoV-2 in cold-chain seafood. However, there are few statistics about the quality changes of salmon exposed to these irradiation dosages. This work demonstrated that E-beam irradiation at dosages capable of killing SARS-CoV-2 induced lipid oxidation, decreased vitamin A content, and increased some amino acids and ash content. In addition, irradiation altered the textural features of salmon, such as its hardness, resilience, cohesiveness, and chewiness. The irradiation considerably affected the L*, a*, and b* values of salmon, with the L* value increasing and a*, b* values decreasing. There was no significant difference in the sensory evaluation of control and irradiated salmon. It was shown that irradiation with 2-7 kGy E-beam did not significantly degrade quality. The inactivation of SARS-CoV-2 in salmon is advised at a dose of 2 kGy.
Collapse
Affiliation(s)
- Huilin Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Junhui Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yan Zhao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Honghao Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yixuan Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Zhu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Mohapatra S, Yutao L, Goh SG, Ng C, Luhua Y, Tran NH, Gin KYH. Quaternary ammonium compounds of emerging concern: Classification, occurrence, fate, toxicity and antimicrobial resistance. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130393. [PMID: 36455328 PMCID: PMC9663149 DOI: 10.1016/j.jhazmat.2022.130393] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 05/25/2023]
Abstract
Amplified hygiene and precautionary measures are of utmost importance to control the spread of COVID-19 and future infection; however, these changes in practice are projected to trigger a rise in the purchase, utilisation and hence, discharge of many disinfectants into the environment. While alcohol-based, hydrogen peroxide-based, and chlorine-based compounds have been used widely, quaternary ammonium compounds (QACs) based disinfectants are of significant concern due to their overuse during this pandemic. This review presents the classification of disinfectants and their mechanism of action, focusing on QACs. Most importantly, the occurrence, fate, toxicity and antimicrobial resistance due to QACs are covered in this paper. Here we collated evidence from multiple studies and found rising trends of concern, including an increase in the mass load of QACs at a wastewater treatment plant (WWTP) by 331% compared to before the COVID-19 pandemic, as well as an increases in the concentration of 62% in residential dust, resulting in high concentrations of QACs in human blood and breast milk and suggesting that these could be potential sources of persistent QACs in infants. In addition to increased toxicity to human and aquatic life, increased use of QACs and accelerated use of antibiotics and antimicrobials during the COVID-19 pandemic could multiply the threat to antimicrobial resistance.
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Lin Yutao
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Shin Giek Goh
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Charmaine Ng
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - You Luhua
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Ngoc Han Tran
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
11
|
Luo Z, Ni K, Zhou Y, Chang G, Yu J, Zhang C, Yin W, Chen D, Li S, Kuang S, Zhang P, Li K, Bai J, Wang X. Inactivation of two SARS-CoV-2 virus surrogates by electron beam irradiation on large yellow croaker slices and their packaging surfaces. Food Control 2023; 144:109340. [PMID: 36091572 PMCID: PMC9445444 DOI: 10.1016/j.foodcont.2022.109340] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022]
Abstract
The detection of infectious SARS-CoV-2 in food and food packaging associated with the cold chain has raised concerns about the possible transmission pathway of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in foods transported through cold-chain logistics and the need for novel decontamination strategies. In this study, the effect of electron beam (E-beam) irradiation on the inactivation of two SARS-CoV-2surrogate, viruses porcine epidemic diarrhea virus (PEDV) and porcine transmissible gastroenteritis virus (TGEV), in culture medium and food substrate, and on food substrate were investigated. The causes of virus inactivation were also investigated by transmission electron microscopy (TEM) and Quantitative Real-time PCR (QRT-PCR). Samples packed inside and outside, including virus-inoculated large yellow croaker and virus suspensions, were irradiated with E-beam irradiation (2, 4, 6, 8, 10 kGy) under refrigerated (0 °C)and frozen (-18 °C) conditions. The titers of both viruses in suspension and fish decreased significantly (P < 0.05) with increasing doses of E-beam irradiation. The maximum D10 value of both viruses in suspension and fish was 1.24 kGy. E-beam irradiation at doses below 10 kGy was found to destroy the spike proteins of both SARS-CoV-2 surrogate viruses by transmission electron microscopy (TEM) and negative staining of thin-sectioned specimens, rendering them uninfectious. E-beam irradiation at doses greater than 10 kGy was also found to degrade viral genomic RNA by qRT-PCR. There were no significant differences in color, pH, TVB-N, TBARS, and sensory properties of irradiated fish samples at doses below 10 kGy. These findings suggested that E-beam irradiation has the potential to be developed as an efficient non-thermal treatment to reduce SARS-CoV-2 contamination in foods transported through cold chain foods to reduce the risk of SARS-CoV-2 infection in humans through the cold chain.
Collapse
Affiliation(s)
- Zonghong Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ke Ni
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Guanhong Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenqi Yin
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Dishi Chen
- Sichuan Animal Disease Prevention and Control Center, Chengdu, 610041, China
| | - Shuwei Li
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Shengyao Kuang
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Peng Zhang
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Kui Li
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Junqing Bai
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, Shaanxi, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
12
|
Pedreira A, Vázquez JA, García MR. Kinetics of Bacterial Adaptation, Growth, and Death at Didecyldimethylammonium Chloride sub-MIC Concentrations. Front Microbiol 2022; 13:758237. [PMID: 35464917 PMCID: PMC9023358 DOI: 10.3389/fmicb.2022.758237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are standard indexes for determining disinfection effectiveness. Nevertheless, they are static values disregarding the kinetics at sub-MIC concentrations where adaptation, growth, stationary, and death phases can be observed. The understanding of these dynamic mechanisms is crucial to designing effective disinfection strategies. In this study, we studied the 48 h kinetics of Bacillus cereus and Escherichia coli cells exposed to sub-MIC concentrations of didecyldimethylammonium chloride (DDAC). Two mathematical models were employed to reproduce the experiments: the only-growth classical logistic model and a mechanistic model including growth and death dynamics. Although both models reproduce the lag, exponential and stationary phases, only the mechanistic model is able to reproduce the death phase and reveals the concentration dependence of the bactericidal/bacteriostatic activity of DDAC. This model could potentially be extended to study other antimicrobials and reproduce changes in optical density (OD) and colony-forming units (CFUs) with the same parameters and mechanisms of action.
Collapse
Affiliation(s)
- Adrián Pedreira
- Biosystems and Bioprocess Engineering (Bio2Eng), Marine Research Institute-Spanish National Research Council (IIM-CSIC), Eduardo Cabello, Vigo, Spain
- Group of Recycling and Valorization of Waste Materials (REVAL), Marine Research Institute-Spanish National Research Council (IIM-CSIC), Eduardo Cabello, Vigo, Spain
| | - José A. Vázquez
- Group of Recycling and Valorization of Waste Materials (REVAL), Marine Research Institute-Spanish National Research Council (IIM-CSIC), Eduardo Cabello, Vigo, Spain
- *Correspondence: José A. Vázquez
| | - Míriam R. García
- Biosystems and Bioprocess Engineering (Bio2Eng), Marine Research Institute-Spanish National Research Council (IIM-CSIC), Eduardo Cabello, Vigo, Spain
- Míriam R. García
| |
Collapse
|
13
|
Zhang C, Yang Y, Feng Z, Xiao C, Liu Y, Song X, Lang T. Cold Chain Food and COVID-19 Transmission Risk: From the Perspective of Consumption and Trade. Foods 2022; 11:foods11070908. [PMID: 35406995 PMCID: PMC8998142 DOI: 10.3390/foods11070908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/08/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Since the outbreak of the coronavirus disease 2019 (COVID-19), political and academic circles have focused significant attention on stopping the chain of COVID-19 transmission. In particular outbreaks related to cold chain food (CCF) have been reported, and there remains a possibility that CCF can be a carrier. Based on CCF consumption and trade matrix data, here, the "source" of COVID-19 transmission through CCF was analyzed using a complex network analysis method, informing the construction of a risk assessment model reflecting internal and external transmission dynamics. The model included the COVID-19 risk index, CCF consumption level, urbanization level, CCF trade quantity, and others. The risk level of COVID-19 transmission by CCF and the dominant risk types were analyzed at national and global scales as well as at the community level. The results were as follows. (1) The global CCF trade network is typically dominated by six core countries in six main communities, such as Indonesia, Argentina, Ukraine, Netherlands, and the USA. These locations are one of the highest sources of risk for COVID-19 transmission. (2) The risk of COVID-19 transmission by CCF in specific trade communities is higher than the global average, with the Netherlands-Germany community being at the highest level. There are eight European countries (i.e., Netherlands, Germany, Belgium, France, Spain, Britain, Italy, and Poland) and three American countries (namely the USA, Mexico, and Brazil) facing a very high level of COVID-19 transmission risk by CCF. (3) Of the countries, 62% are dominated by internal diffusion and 23% by external input risk. The countries with high comprehensive transmission risk mainly experience risks from external inputs. This study provides methods for tracing the source of virus transmission and provides a policy reference for preventing the chain of COVID-19 transmission by CCF and maintaining the security of the global food supply chain.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Z.F.); (C.X.); (Y.L.); (X.S.); (T.L.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yanzhao Yang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Z.F.); (C.X.); (Y.L.); (X.S.); (T.L.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources, Beijing 100101, China
- Correspondence:
| | - Zhiming Feng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Z.F.); (C.X.); (Y.L.); (X.S.); (T.L.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources, Beijing 100101, China
| | - Chiwei Xiao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Z.F.); (C.X.); (Y.L.); (X.S.); (T.L.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources, Beijing 100101, China
| | - Ying Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Z.F.); (C.X.); (Y.L.); (X.S.); (T.L.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinzhe Song
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Z.F.); (C.X.); (Y.L.); (X.S.); (T.L.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Lang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Z.F.); (C.X.); (Y.L.); (X.S.); (T.L.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Locas A, Brassard J, Rose-Martel M, Lambert D, Green A, Deckert A, Illing M. Comprehensive Risk Pathway of the Qualitative Likelihood of Human Exposure to Severe Acute Respiratory Syndrome Coronavirus 2 from the Food Chain. J Food Prot 2022; 85:85-97. [PMID: 34499732 PMCID: PMC9906280 DOI: 10.4315/jfp-21-218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/08/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT A group of experts from all Canadian federal food safety partners was formed to monitor the potential issues relating to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) food contamination, to gather and consider all of the relevant evidence and to determine the impact for Canadian food safety. A comprehensive risk pathway was generated to consider the likelihood of a SARS-CoV-2 contamination event at any of the relevant steps of the food processing and handling chain and the potential for exposure and transmission of the virus to the consumer. The scientific evidence was reviewed and assessed for each event in the pathway, taking into consideration relevant elements that could increase or mitigate the risk of contamination. The advantage of having an event-wise contextualization of the SARS-CoV-2 transmission pathway through the food chain is that it provides a systematic and consistent approach to evaluate any new data and communicate its importance and impact. The pathway also increases the objectivity and consistency of the assessment in a rapidly evolving and high-stakes situation. Based on our review and analysis, there is currently no comprehensive epidemiological evidence of confirmed cases of SARS-CoV-2, or its known variants, causing coronavirus disease 2019 from transmission through food or food packaging. Considering the remote possibility of exposure through food, the likelihood of exposure by ingestion or contact with mucosa is considered negligible to very low, and good hygiene practices during food preparation should continue to be followed. HIGHLIGHTS
Collapse
Affiliation(s)
- Annie Locas
- Canadian Food Inspection Agency, 1400 Merivale, Ottawa, Ontario, Canada K1A 0Y9,Author for correspondence. Tel: 613-773-6539
| | - Julie Brassard
- Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec, Canada J2S 8E3
| | - Megan Rose-Martel
- Health Canada, 251 Sir Frederick Banting Drive, Ottawa, Ontario, Canada K1A 0K9
| | - Dominic Lambert
- Canadian Food Inspection Agency, 3400 Casavant Boulevard West, Saint-Hyacinthe, Quebec, Canada J2S 8E3
| | - Alyssa Green
- Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario, Canada N1H 7M7
| | - Anne Deckert
- Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario, Canada N1H 7M7
| | - Michelle Illing
- Canadian Food Inspection Agency, 1400 Merivale, Ottawa, Ontario, Canada K1A 0Y9
| |
Collapse
|
15
|
Rowan NJ, Meade E, Garvey M. Efficacy of frontline chemical biocides and disinfection approaches for inactivating SARS-CoV-2 variants of concern that cause coronavirus disease with the emergence of opportunities for green eco-solutions. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2021; 23:100290. [PMID: 34250323 PMCID: PMC8254398 DOI: 10.1016/j.coesh.2021.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The emergence of severe acute respiratory disease (SARS-CoV-2) variants that cause coronavirus disease is of global concern. Severe acute respiratory disease variants of concern (VOC) exhibiting greater transmissibility, and potentially increased risk of hospitalization, severity and mortality, are attributed to molecular mutations in outer viral surface spike proteins. Thus, there is a reliance on using appropriate counter-disease measures, including non-pharmaceutical interventions and vaccination. The best evidence suggests that the use of frontline biocides effectively inactivate coronavirus similarly, including VOC, such as 202012/01, 501Y.V2 and P.1 that have rapidly replaced the wild-type variant in the United Kingdom, South Africa and Brazil, respectively. However, this review highlights that efficacy of VOC-disinfection will depend on the type of biocide and the parameters governing the activity. VOC are likely to be similar in size to the wild-type strain, thus implying that existing guidelines for use and re-use of face masks post disinfection remain relevant. Monitoring to avoid injudicious use of biocides during the coronavirus disease era is required as prolonged and excessive biocide usage may negatively impact our receiving environments; thus, highlighting the potential for alternative more environmental-friendly sustainable biocide solutions. Traditional biocides may promote cross-antimicrobial resistance to antibiotics in problematical bacteria. The existing filtration efficacy of face masks is likely to perform similarly for VOC due to similar viral size; however, advances in face mask manufacturing by way incorporating new anti-viral materials will potentially enhance their design and functionality for existing and potential future pandemics.
Collapse
Affiliation(s)
- Neil J Rowan
- Centre for Disinfection and Sterilisation, Athlone Institute of Technology, Dublin Road, Athlone, Ireland
- Department of Nursing and Healthcare, Athlone Institute of Technology, Dublin Road, Athlone, Ireland
| | - Elaine Meade
- Department of Life Science, Institute of Technology, Sligo, Ash Lane, Sligo, Ireland
| | - Mary Garvey
- Department of Life Science, Institute of Technology, Sligo, Ash Lane, Sligo, Ireland
| |
Collapse
|