1
|
Luque OMB, Valero A, Possas A, Roufou S, de Oliveira Mallia J, Valdramidis V. Q4MRATools: Quantitative tools to microbial risk assessment. EFSA J 2024; 22:e221113. [PMID: 39712906 PMCID: PMC11659719 DOI: 10.2903/j.efsa.2024.e221113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
In the context of the European Food Risk Assessment (EU-FORA) fellowship programme, the project 'Q4MRATools: Quantitative Tools to Microbial Risk Assessment' focused on training in predictive microbiology, experimental design and the use of advanced software tools like R, MATLAB, @Risk, DMFit and GInaFiT. The primary objective of this programme was to equip the fellow with foundational knowledge in quantitative microbial risk assessments (QMRA), thereby contributing to the development of more effective and accurate food safety risk assessments. This initiative was part of a broader effort to address the evolving challenges in food safety by enhancing collaborative actions and developing robust food safety systems. The fellow engaged in various risk assessment tasks, acquiring fundamental knowledge in predictive microbiology, particularly different modelling strategies for growth and inactivation models, as well as understanding the nuances of microbiological behaviour under different conditions and food matrixes environments. The training emphasised the importance of experimental design and the application of software tools essential for conducting QMRA. Secondary activities were also included to broaden the fellow's competencies, expanding their expertise beyond qualitative methods.
Collapse
Affiliation(s)
- Olga María Bonilla Luque
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3Universidad de CórdobaCórdobaSpain
| | - Antonio Valero
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3Universidad de CórdobaCórdobaSpain
| | - Arícia Possas
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3Universidad de CórdobaCórdobaSpain
| | - Styliani Roufou
- Laboratory of Food Chemistry, Department of Chemistry, ZografouNational and Kapodistrian University of AthensAthensGreece
| | | | - Vasilis Valdramidis
- Laboratory of Food Chemistry, Department of Chemistry, ZografouNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
2
|
Shi C, Jia L, Tao H, Li C, Aziz T, Alhomrani M, Cui H, Lin L. Effects of guar gum/chitosan edible films functionalized with citronellal/HPβCD inclusion complex on Harbin red sausage preservation. Int J Biol Macromol 2024; 282:137312. [PMID: 39515733 DOI: 10.1016/j.ijbiomac.2024.137312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Harbin red sausage is a traditional local pork meat product in China, but it is susceptible to microbial contamination and lipid oxidation, leading to quality deterioration. Herein, guar gum (GG)/chitosan (CS) edible films functionalized with citronellal/hydroxypropyl-β-cyclodextrin inclusion complex (CIT/HPβCD-IC) were fabricated for Harbin red sausage preservation. Results demonstrated CIT/HPβCD-IC was successfully prepared and observed by SEM due to the bathochromic shift of maximum absorption peak of CIT, and the formation of new bonds was confirmed by FTIR analysis, suggesting the embedding of CIT into HPβCD cavity. The changes of functional groups stretching vibrations suggested successful loading of CIT/HPβCD-IC into the GG/CS edible films. Furthermore, the incorporation of CIT/HPβCD-IC enhanced the microstructural, mechanical and barrier properties, and improved the antibacterial activities, biodegradability and thermal stability of the GG/CS edible films. Particularly, the GG/CS edible films incorporated with 1 % CIT/HPβCD-IC (GG/CS-IC 1 %) enhanced the storage stability of Harbin red sausage at 4 °C by decreasing the weight loss rate, maintaining the pH, color, and textural stabilities, retarding the microbial growth and lipid oxidation of the sausage samples. Findings here suggested that GG/CS-IC 1 % edible films showed great potential as novel multi-functional edible packaging materials for Harbin red sausage preservation.
Collapse
Affiliation(s)
- Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China
| | - Li Jia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China
| | - Tariq Aziz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, PR China.
| |
Collapse
|
3
|
Câmara AA, Margalho LP, Lang E, Brexó RP, Sant'Ana AS. Yeast diversity in Brazilian artisanal cheeses: Unveiling technologically relevant species to improve traditional cheese production. Food Res Int 2024; 196:115107. [PMID: 39614576 DOI: 10.1016/j.foodres.2024.115107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 12/01/2024]
Abstract
Although less studied than bacterial biota, the presence of yeast during the artisanal cheese's production is of fundamental importance. Yeasts can prevent the growth of undesirable species in the cheese's core and surface and actively participate in the aromatic development of these products. On the other hand, reintroducing the most abundant yeast species can help mitigate potential health risks related to artisanal production. The main objective of this study was to carry out an extensive mapping of the cultivable yeast diversity present in the central Brazilian artisanal cheeses (n = 582 cheese samples). Torulasporadelbrueckii, Candidaparapsilosis, Candidazeylanoides, Yarrowialipolytica, Debaryomycesprosopidis, and Kluyveromyceslactis were amongst the 300 clusters detected, respectively. In Canastra, Cerrado, and Serro-type cheeses, the predominant species was T.delbrueckii, while in Coalho and Manteiga cheeses, Y.lipolytica was the main species detected. The findings of this study reveal the yeast cultivable diversity present in a large set of Brazilian artisanal cheeses. Furthermore, these data can serve as a basis for promoting new Brazilian origin designation policies based on microbiological data.
Collapse
Affiliation(s)
- Antonio A Câmara
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Brazil
| | - Larissa P Margalho
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Brazil
| | - Emilie Lang
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Brazil
| | - Ramon P Brexó
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Brazil.
| |
Collapse
|
4
|
Atasoy M, Bartkova S, Çetecioğlu-Gürol Z, P Mira N, O'Byrne C, Pérez-Rodríguez F, Possas A, Scheler O, Sedláková-Kaduková J, Sinčák M, Steiger M, Ziv C, Lund PA. Methods for studying microbial acid stress responses: from molecules to populations. FEMS Microbiol Rev 2024; 48:fuae015. [PMID: 38760882 PMCID: PMC11418653 DOI: 10.1093/femsre/fuae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
The study of how micro-organisms detect and respond to different stresses has a long history of producing fundamental biological insights while being simultaneously of significance in many applied microbiological fields including infection, food and drink manufacture, and industrial and environmental biotechnology. This is well-illustrated by the large body of work on acid stress. Numerous different methods have been used to understand the impacts of low pH on growth and survival of micro-organisms, ranging from studies of single cells to large and heterogeneous populations, from the molecular or biophysical to the computational, and from well-understood model organisms to poorly defined and complex microbial consortia. Much is to be gained from an increased general awareness of these methods, and so the present review looks at examples of the different methods that have been used to study acid resistance, acid tolerance, and acid stress responses, and the insights they can lead to, as well as some of the problems involved in using them. We hope this will be of interest both within and well beyond the acid stress research community.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University and Research, PO Box 9101, 6700 HB, the Netherlands
| | - Simona Bartkova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Zeynep Çetecioğlu-Gürol
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21 106 91 Stockholm, Stockholm, Sweden
| | - Nuno P Mira
- iBB, Institute for Bioengineering and Biosciences, Department of Bioengineering, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Conor O'Byrne
- Microbiology, School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Aricia Possas
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Ott Scheler
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Jana Sedláková-Kaduková
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Mirka Sinčák
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Matthias Steiger
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, 7505101 Rishon LeZion, Israel
| | - Peter A Lund
- School of Biosciences and Institute of Microbiology of Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
5
|
Zhu GF, Vidyarthi SK, Zhou XQ, Zhang YL, Lei DW, Li LX, Shi JF, Chen PX, Xie QZ, Xiao HW. Multiphysical field and multiobjective mathematical modeling of grain-oilseed storage: Current status and future trends. Compr Rev Food Sci Food Saf 2024; 23:e13432. [PMID: 39289792 DOI: 10.1111/1541-4337.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 09/19/2024]
Abstract
Storage is an important process involved in the postharvest treatment of grain-oilseed and is necessary for maintaining high quality and ensuring the long-term supply of these commodities in the food industry. Proper storage practices help prevent spoilage, maintain nutritional value, and preserve marketable quality. It is of great interest for storage to investigate flow, heat and mass transfer processes, and quality change for optimizing the operation parameters and ensuring the quality of grain-oilseed. This review discusses the mathematical models developed and applied to describe the physical field, biological field, and quality change during the storage of grain-oilseed. The advantages, drawbacks, and industrial relevance of the existing mathematical models were also critically evaluated, and an organic system was constructed by correlating them. Finally, the future research trends of the mathematical models toward the development of multifield coupling models based on biological fields to control quality were presented to provide a reference for further directions on the application of numerical simulations in this area. Meanwhile, artificial intelligence (AI) can greatly enhance our understanding of the coupling relationships within grain-oilseed storage. AI's strengths in both qualitative and quantitative analysis, as well as its effectiveness, make it an invaluable tool for this purpose.
Collapse
Affiliation(s)
- Guang-Fei Zhu
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Sriram K Vidyarthi
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| | - Xin-Qun Zhou
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yong-Li Zhang
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Deng-Wen Lei
- College of Engineering, China Agricultural University, Beijing, China
| | - Lan-Xin Li
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jian-Fang Shi
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Peng-Xiao Chen
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China
| | - Qi-Zhen Xie
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hong-Wei Xiao
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| |
Collapse
|
6
|
Santamarina-García G, Amores G, Llamazares D, Hernández I, Javier R Barron L, Virto M. Phenotypic and genotypic characterization of antimicrobial resistances reveals the effect of the production chain in reducing resistant lactic acid bacteria in an artisanal raw ewe milk PDO cheese. Food Res Int 2024; 187:114308. [PMID: 38763625 DOI: 10.1016/j.foodres.2024.114308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Antimicrobial resistance (AMR) is a significant public health threat, with the food production chain, and, specifically, fermented products, as a potential vehicle for dissemination. However, information about dairy products, especially raw ewe milk cheeses, is limited. The present study analysed, for the first time, the occurrence of AMRs related to lactic acid bacteria (LAB) along a raw ewe milk cheese production chain for the most common antimicrobial agents used on farms (dihydrostreptomycin, benzylpenicillin, amoxicillin and polymyxin B). More than 200 LAB isolates were obtained and identified by Sanger sequencing (V1-V3 16S rRNA regions); these isolates included 8 LAB genera and 21 species. Significant differences in LAB composition were observed throughout the production chain (P ≤ 0.001), with Enterococcus (e.g., E. hirae and E. faecalis) and Bacillus (e.g., B. thuringiensis and B. cereus) predominating in ovine faeces and raw ewe milk, respectively, along with Lactococcus (L. lactis) in whey and fresh cheeses, while Lactobacillus and Lacticaseibacillus species (e.g., Lactobacillus sp. and L. paracasei) prevailed in ripened cheeses. Phenotypically, by broth microdilution, Lactococcus, Enterococcus and Bacillus species presented the greatest resistance rates (on average, 78.2 %, 56.8 % and 53.4 %, respectively), specifically against polymyxin B, and were more susceptible to dihydrostreptomycin. Conversely, Lacticaseibacillus and Lactobacillus were more susceptible to all antimicrobials tested (31.4 % and 39.1 %, respectively). Thus, resistance patterns and multidrug resistance were reduced along the production chain (P ≤ 0.05). Genotypically, through HT-qPCR, 31 antimicrobial resistance genes (ARGs) and 6 mobile genetic elements (MGEs) were detected, predominating Str, StrB and aadA-01, related to aminoglycoside resistance, and the transposons tnpA-02 and tnpA-01. In general, a significant reduction in ARGs and MGEs abundances was also observed throughout the production chain (P ≤ 0.001). The current findings indicate that LAB dynamics throughout the raw ewe milk cheese production chain facilitated a reduction in AMRs, which has not been reported to date.
Collapse
Affiliation(s)
- Gorka Santamarina-García
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute-Prevention, Promotion and Health Care, 01009 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Gustavo Amores
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute-Prevention, Promotion and Health Care, 01009 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Diego Llamazares
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Igor Hernández
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute-Prevention, Promotion and Health Care, 01009 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Luis Javier R Barron
- Lactiker Research Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Mailo Virto
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute-Prevention, Promotion and Health Care, 01009 Vitoria-Gasteiz, Spain; Joint Research Laboratory on Environmental Antibiotic Resistance, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
7
|
Domingues Galli B, Trossolo E, Carafa I, Squara S, Caratti A, Filannino P, Cordero C, Gobbetti M, Di Cagno R. Effectiveness of modified atmosphere and vacuum packaging in preserving the volatilome of Stelvio PDO cheese over time. Food Chem 2024; 444:138544. [PMID: 38310777 DOI: 10.1016/j.foodchem.2024.138544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/06/2024]
Abstract
We aimed to assay the effectiveness of vacuum or modified atmosphere packaging in preserving the organoleptic characteristics of already ripened slices of Stelvio Protected Designation of Origin cheese during 3 months of storage. A multi-omics panel, including metagenomic and metabolomic analyses, was implemented together with physicochemical and sensory analyses. Among the 177 volatiles identified, 30 out of the 50 potent odorants were found to be prevalent, regardless of packaging. Isovaleric acid showed the highest relative intensity in all samples. Caproic and caprylic acids always increased during storage, while metabolites such as dodecane and 2,3-butanediol always decreased. Slow proteolysis occurred during storage, but did not differentiate cheese samples. The type of packaging differentiated the microbiota and volatile profile, with modified atmosphere packaging keeping the volatilome more stable. Out of the 50 potent odorants, 9 were relevant to sample discrimination, with 8-nonen-2-one, 2-nonanone, and caproic acid being more abundant in stored samples.
Collapse
Affiliation(s)
- Bruno Domingues Galli
- Libera Università di Bolzano, Faculty of Agriculture, Environmental and Food Sciences, Bolzano, BZ, Italy
| | - Elisabetta Trossolo
- Libera Università di Bolzano, Faculty of Agriculture, Environmental and Food Sciences, Bolzano, BZ, Italy
| | - Ilaria Carafa
- Libera Università di Bolzano, Faculty of Agriculture, Environmental and Food Sciences, Bolzano, BZ, Italy
| | - Simone Squara
- Università di Torino, Dipartimento di Scienza e Tecnologia del Farmaco, Turin, TO, Italy
| | - Andrea Caratti
- Università di Torino, Dipartimento di Scienza e Tecnologia del Farmaco, Turin, TO, Italy
| | - Pasquale Filannino
- University of Bari Aldo Moro, Department of Soil, Plant and Food Sciences, Bari, BA, Italy
| | - Chiara Cordero
- Università di Torino, Dipartimento di Scienza e Tecnologia del Farmaco, Turin, TO, Italy
| | - Marco Gobbetti
- Libera Università di Bolzano, Faculty of Agriculture, Environmental and Food Sciences, Bolzano, BZ, Italy
| | - Raffaella Di Cagno
- Libera Università di Bolzano, Faculty of Agriculture, Environmental and Food Sciences, Bolzano, BZ, Italy.
| |
Collapse
|
8
|
Mendonça R, Furtado R, Coelho A, Correia CB, Suyarko E, Borges V, Gomes JP, Pista A, Batista R. Raw milk cheeses from Beira Baixa, Portugal-A contributive study for the microbiological hygiene and safety assessment. Braz J Microbiol 2024; 55:1759-1772. [PMID: 38622468 PMCID: PMC11153484 DOI: 10.1007/s42770-024-01332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Due to specific bacterial microbiota, raw milk cheeses have appreciated sensory properties. However, they may pose a threat to consumer safety due to potential pathogens presence. This study evaluated the microbiological contamination of 98 raw milk cheeses from Beira Baixa, Portugal. Presence and enumeration of Coagulase Positive Staphylococci (CPS), Listeria monocytogenes, Salmonella spp., pathogenic Escherichia coli, and indicator microorganisms (non-pathogenic E. coli and Listeria spp.) was attained. E. coli antimicrobial resistance (AMR) was also evaluated. PCR and/or Whole genome sequencing (WGS) was used to characterize E. coli, Salmonella spp. and L. monocytogenes isolates. Sixteen cheeses (16.3%) were classified as Satisfactory, 59 (60.2%) as Borderline and 23 (23.5%) as Unsatisfactory/Potential Injurious to Health. L. monocytogenes, CPS > 104 cfu g-1, Extraintestinal pathogenic E. coli (ExPEC) and Salmonella spp. were detected in 4.1%, 6.1%, 3.1% and 1.0% of the samples, respectively. Listeria innocua (4.1%) and E. coli > 104 cfu g-1 (16.3%) were also detected. AMR E. coli was detected in 23/98 (23.5%) of the cheese samples, of which two were multidrug resistant. WGS identified genotypes already associated to human disease and Listeria spp. cluster analysis indicated that cheese contamination might be related with noncompliance with Good Hygiene Practices during cheese production.
Collapse
Affiliation(s)
- Rita Mendonça
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
- Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| | - Rosália Furtado
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Anabela Coelho
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Cristina Belo Correia
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Elena Suyarko
- Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- NOVA School of Science and Technology, 2829-516, Caparica, Portugal
| | - Vítor Borges
- Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - João Paulo Gomes
- Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Animal and Veterinary Research Center (CECAV), Faculty of Veterinary Medicine, Lusófona University-Lisbon University Centre, Lisbon, Portugal
| | - Angela Pista
- Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Rita Batista
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
| |
Collapse
|
9
|
Cardin M, Cardazzo B, Coton M, Carraro L, Lucchini R, Novelli E, Coton E, Mounier J. Ecological diversity and associated volatilome of typical mountain Caciotta cheese from Italy. Int J Food Microbiol 2024; 411:110523. [PMID: 38134579 DOI: 10.1016/j.ijfoodmicro.2023.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/24/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Traditional products are particularly appreciated by consumers and among these products, cheese is a major contributor to the Italian mountainous area economics. In this study, shotgun metagenomics and volatilomics were used to understand the biotic and abiotic factors contributing to mountain Caciotta cheese typicity and diversity. Results showed that the origin of cheese played a significant role; however, curd cooking temperature, pH, salt concentration and water activity also had an impact. Viral communities exhibited higher biodiversity and discriminated cheese origins in terms of production farms. Among the most dominant bacteria, Streptococcus thermophilus showed higher intraspecific diversity and closer relationship to production farm when compared to Lactobacillus delbrueckii. However, despite a few cases in which the starter culture was phylogenetically separated from the most dominant strains sequenced in the cheese, starter cultures and dominant cheese strains clustered together suggesting substantial starter colonization in mountain Caciotta cheese. The Caciotta cheese volatilome contained prominent levels of alcohols and ketones, accompanied by lower proportions of terpenes. Volatile profile not only demonstrated a noticeable association with production farm but also significant differences in the relative abundances of enzymes connected to flavor development. Moreover, correlations of different non-homologous isofunctional enzymes highlighted specific contributions to the typical flavor of mountain Caciotta cheese. Overall, this study provides a deeper understanding of the factors shaping typical mountain Caciotta cheese, and the potential of metagenomics for characterizing and potentially authenticating food products.
Collapse
Affiliation(s)
- Marco Cardin
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy; Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy.
| | - Monika Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Rosaria Lucchini
- Italian Health Authority and Research Organization for Animal Health and Food Safety (Istituto zooprofilattico sperimentale delle Venezie), Viale Università 10, 35020 Legnaro, PD, Italy
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Emmanuel Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Jérôme Mounier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
10
|
Erceg T, Šovljanski O, Tomić A, Aćimović M, Stupar A, Baloš S. Comparison of the Properties of Pullulan-Based Active Edible Coatings Implemented for Improving Sliced Cheese Shelf Life. Polymers (Basel) 2024; 16:178. [PMID: 38256977 PMCID: PMC10821112 DOI: 10.3390/polym16020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The development of active edible coatings with improved mechanical and barrier properties is a huge challenge. In this study, active edible coatings for sliced cheese have been developed using pullulan (Pull) in combination with two different biopolymers, chitosan (CS) and gelatine (Gel), and a combination of hydrolats as a source of active compounds with antimicrobial effects. In comparison to the monolayer coating, the bilayer coating system demonstrates improved barrier and mechanical properties. A preliminary assessment of the antimicrobial effect of lemongrass and curry plant hydrolats has revealed that both hydrolats exhibited antimicrobial activity against the targeted bacterium Staphylococcus aureus, albeit at different levels. The obtained results suggest that a mixture of 1.56% lemongrass and 12.5% curry plant hydrolats yielded a lower fractional inhibitory concentration (FIC) value. Bilayer coating systems (Pull/CS and Pull/Gel) with an incorporated mixture of hydrolats have demonstrated effectiveness in both cases: artificial contamination before application of the coating system and after application of the coating system. In both contamination scenarios, the coating systems consistently effectively limited bacterial proliferation, indicating the antimicrobial effect of the hydrolat mixture in the coating layers. In the case of artificial contamination before applying the coating system, both coatings demonstrated antimicrobial effectiveness, but the formulation with chitosan had a biocide effect, while the other, with gelatine, had only a bacteriostatic effect in a long-term setting. In the second case, both Pull/CS and Pull/Gel coatings demonstrated effectiveness in inhibiting bacterial growth regardless of the moment of contamination of the sample; the Pull/CS coating showed slightly better antimicrobial activity, achieving complete elimination of bacteria earlier compared with the Pull/Gel coating system.
Collapse
Affiliation(s)
- Tamara Erceg
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Olja Šovljanski
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Ana Tomić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Milica Aćimović
- Institute of Field and Vegetable Crops Novi Sad, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia;
| | - Alena Stupar
- Institute of Food Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Sebastian Baloš
- Faculty of Technical Science, University of Novi Sad, 21000 Novi Sad, Serbia;
| |
Collapse
|
11
|
Caldeira LA, Valente GLC, Barbosa CD, Braga DE, Monção FP, Fonseca LM, Souza MR, Gloria MBA. Profile of lactic acid bacteria (MALDI-TOF-MS) and physico-chemical and microbiological characteristics of the raw milk and fresh artisanal cheese from Serra Geral, Minas Gerais, Brazil. Food Res Int 2024; 176:113831. [PMID: 38163729 DOI: 10.1016/j.foodres.2023.113831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Artisanal cheese from Serra Geral, Minas Gerais, Brazil, stands out for its cultural asset and socio-economic relevance. However, standards of identity and quality and the peculiar terroir associated with the edaphoclimatic conditions have not been established. Therefore, the production flow diagram and the physico-chemical and microbiological quality of the raw milk, pingo (natural starter culture), production benches, water and fresh cheese were investigated for the first time. In addition, lactic acid bacteria (LAB) from cheese and its production environment were identified by MALDI-TOF. For that, 12 cheese making facilities were selected. The raw milk and pingo showed adequate physico-chemical characteristics for cheesemaking; however, high microbial counts were found. In the water, total and thermotolerant coliforms were also identified. The fresh cheeses were classified as 'high moisture and fat' and 'soft mass'. Most physico-chemical parameters were satisfactory; however, there were high counts of total coliforms, Staphylococcus spp. and coagulase-positive staphylococci. There were high counts of LAB in the raw milk, pingo, bench surface and fresh cheese. A total of 84 microbial biotypes from MRS agar were isolated. Lactococcus lactis was the predominant LAB, followed by Lactococcus garvieae. Leuconostoc mesenteroides (benches), Leuconostoc pseudomesenteroides (fresh cheese), and Enterococcus faecium (pingo) were identified sporadically. These results indicate the risks to public health associated with the consumption of the fresh cheese, and measures to improve its safety are needed.
Collapse
Affiliation(s)
- Luciana A Caldeira
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31.270-901, Brasil; Departamento de Ciências Agrárias, Universidade Estadual de Montes Claros, Janaúba, Minas Gerais, 39.448-524, Brasil.
| | - Gustavo L C Valente
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Cosme D Barbosa
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Douglas E Braga
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Flavio P Monção
- Departamento de Ciências Agrárias, Universidade Estadual de Montes Claros, Janaúba, Minas Gerais, 39.448-524, Brasil
| | - Leorges M Fonseca
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Marcelo R Souza
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Maria Beatriz A Gloria
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31.270-901, Brasil; Laboratórios de Controle de Qualidade - LCQ, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31.270-901, Brasil.
| |
Collapse
|
12
|
Kunová S, Taglieri I, Haščík P, Ben Hsouna A, Mnif W, Venturi F, Sanmartin C, Čmiková N, Kluz MI, Kačániová M. Dried Herbs as an Easy-to-Use and Cost-Effective Alternative to Essential Oils to Extend the Shelf Life of Sheep Lump Cheese. Foods 2023; 12:4487. [PMID: 38137291 PMCID: PMC10743011 DOI: 10.3390/foods12244487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The objective of this research was to assess the effectiveness of three specific dried herbs (rosemary, thyme, and oregano) in combating microbial spoilage in sheep lump cheese. This was achieved by comparing them with a control group and cheeses treated with corresponding 1% essential oils (Rosmarinus officinalis, Origanum vulgare, Thymus vulgaris). All cheese samples were vacuum-sealed and stored at 4 °C for 15 days. Analysis of total viable counts of viable bacteria (TVC), coliform bacteria (CB), lactic acid bacteria (LAB), and microscopic filamentous fungi (MFF) was conducted on days 0, 5, 10, and 15. The results revealed that, at the end of the storage period, dried oregano-treated samples exhibited the lowest TVC count (5.80 log CFU/g), while dried rosemary-treated samples showed the lowest CB count (3.27 log CFU/g). Moreover, the lowest MFF count (2.40 log CFU/g) was observed in oregano essential oil-treated samples. Additionally, dried oregano-treated samples displayed the highest LAB count (4.49 log CFU/g) at the experiment's conclusion. Furthermore, microorganism identification from sheep cheese was performed using MALDI-TOF MS Biotyper technology, revealing that the most frequently isolated bacteria were Citrobacter braakii and Hafnia alvei (Enterobacteriaceae family), along with Lacticaseibacillus paracasei (Lactobacillaceae family). In summary, all the natural substances examined exhibited inhibitory effects against the studied microorganisms, with oregano essential oil and dried oregano demonstrating the strongest inhibitory effects. This supports their potential use as cost-effective natural preservatives to extend the shelf life of sheep lump cheese.
Collapse
Affiliation(s)
- Simona Kunová
- Institute of Food Technology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 94976 Nitra, Slovakia (P.H.)
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy (C.S.)
- Nutrafood Research Center, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Peter Haščík
- Institute of Food Technology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 94976 Nitra, Slovakia (P.H.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, Sfax 3038, Tunisia;
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy (C.S.)
- Nutrafood Research Center, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy (C.S.)
- Nutrafood Research Center, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Maciej Ireneusz Kluz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland;
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01 043 Warszawa, Poland;
| |
Collapse
|
13
|
Silva LF, Sunakozawa TN, Monteiro DA, Casella T, Conti AC, Todorov SD, Barretto Penna AL. Potential of Cheese-Associated Lactic Acid Bacteria to Metabolize Citrate and Produce Organic Acids and Acetoin. Metabolites 2023; 13:1134. [PMID: 37999230 PMCID: PMC10673126 DOI: 10.3390/metabo13111134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Lactic acid bacteria (LAB) are pivotal in shaping the technological, sensory, and safety aspects of dairy products. The evaluation of proteolytic activity, citrate utilization, milk pH reduction, and the production of organic compounds, acetoin, and diacetyl by cheese associated LAB strains was carried out, followed by Principal Component Analysis (PCA). Citrate utilization was observed in all Leuconostoc (Le.) mesenteroides, Le. citreum, Lactococcus (Lc.) lactis, Lc. garvieae, and Limosilactobacillus (Lm.) fermentum strains, and in some Lacticaseibacillus (Lact.) casei strains. Most strains exhibited proteolytic activity, reduced pH, and generated organic compounds. Multivariate PCA revealed Le. mesenteroides as a prolific producer of acetic, lactic, formic, and pyruvic acids and acetoin at 30 °C. Enterococcus sp. was distinguished from Lact. casei based on acetic, formic, and pyruvic acid production, while Lact. casei primarily produced lactic acid at 37 °C. At 42 °C, Lactobacillus (L.) helveticus and some L. delbrueckii subsp. bulgaricus strains excelled in acetoin production, whereas L. delbrueckii subsp. bulgaricus and Streptococcus (S.) thermophilus strains primarily produced lactic acid. Lm. fermentum stood out with its production of acetic, formic, and pyruvic acids. Overall, cheese-associated LAB strains exhibited diverse metabolic capabilities which contribute to desirable aroma, flavor, and safety of dairy products.
Collapse
Affiliation(s)
- Luana Faria Silva
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Tássila Nakata Sunakozawa
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Diego Alves Monteiro
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Tiago Casella
- Department of Dermatological, Infectious and Parasitic Diseases, FAMERP—São José do Rio Preto Medical School, São José do Rio Preto 15090-000, SP, Brazil;
| | - Ana Carolina Conti
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, USP—São Paulo University, São Paulo 05508-000, SP, Brazil;
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal
| | - Ana Lúcia Barretto Penna
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| |
Collapse
|
14
|
Wu Q, Liu J, Malakar PK, Pan Y, Zhao Y, Zhang Z. Modeling naturally-occurring Vibrio parahaemolyticus in post-harvest raw shrimps. Food Res Int 2023; 173:113462. [PMID: 37803786 DOI: 10.1016/j.foodres.2023.113462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
There is little known about the growth and survival of naturally-occurring Vibrio parahaemolyticus in harvested raw shrimps. In this study, the fate of naturally-occurring V. parahaemolyticus in post-harvest raw shrimps was investigated from 4℃ to 30℃ using real-time PCR combined with propidium monoazide (PMA-qPCR). The Baranyi-model was used to fit the growth and survival data. A square root model and non-linear Arrhenius model was then used to quantify the parameters derived from the Baranyi-model. The results showed that naturally-occurring V. parahaemolyticus were slowly inactivated at 4℃ and 7℃ with deactivation rates of 0.019 Log CFU/g/h and 0.025 Log CFU/g/h. Conversely, at 15, 20, 25, and 30 °C, the average maximum growth rates (μmax) of naturally-occurring V. parahaemolyticus were determined to be 0.044, 0.105, 0.179 and 0.336 Log CFU/g/h, accompanied by the average lag phases (λ) of 15.5 h, 7.3 h, 4.4 h and 3.7 h. The validation metrics, Af and Bf, for both the square root model and non-linear, indicating that the model had a good ability to predict the growth behavior of naturally-occurring V. parahaemolyticus in post-harvest raw shrimps. Furthermore, a comparative exploration between the growth of artificially contaminated V. parahaemolyticus in cooked shrimps and naturally-occurring V. parahaemolyticus in post-harvest raw shrimps revealed intriguing insights. While no substantial distinction in deactivation rates emerged at 4 °C and 7 °C (P > 0.05), a discernible disparity in growth rates was observable at 15 °C, 20 °C, 25 °C, and 30 °C, with the former surpassing the latter. Which indicated the risk of V. parahaemolyticus using models derived from cooked shrimps may be biased. Our study also unveiled a discernible seasonal effect. The μmax and λ of V. parahaemolyticus in shrimps harvested in summer were similar to those harvested in autumn, while the initial and maximum bacterial concentration harvested in summer were higher than those harvested in autumn. This predictive microbiology model of naturally-occurring V. parahaemolyticus in raw shrimps provides relevance to modelling growth in situ.
Collapse
Affiliation(s)
- Qian Wu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Jing Liu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China.
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China; International Research Center for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China.
| |
Collapse
|
15
|
Bonilla-Luque OM, Possas A, Cabo ML, Rodríguez-López P, Valero A. Tracking microbial quality, safety and environmental contamination sources in artisanal goat cheesemaking factories. Food Microbiol 2023; 114:104301. [PMID: 37290877 DOI: 10.1016/j.fm.2023.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
A harmonised microbiological survey was performed in two artisanal factories of raw goat milk cheeses (A and B) located in the Andalusian region (Spain). A total of 165 different control points or samples (raw materials, final products, food-contact surfaces [FCS], and air) were examined as microbial and pathogen sources of contamination of artisanal goat raw milk cheeses. For raw milk samples analysed from both producers, the concentrations of aerobic-mesophilic bacteria (AMB), total coliforms, coagulase-positive Staphylococcus spp. (CPS), lactic-acid bacteria (LAB) and moulds and yeasts ranged between 3.48 and 8.59, 2.45-5.48, 3.42-4.81, 4.99-8.59 and 3.35-6.85 log cfu/mL respectively. For the same microbial groups, the analysis of raw milk cheeses revealed concentrations ranging from 7.82 to 8.88, 2.00-6.82, 2.00-5.28, 8.11-9.57 and 2.00-5.76 log cfu/g, respectively. Although the raw material analysed from producer A presented higher microbial loads and between-batch variability, it was B the producer with the most loaded final products. Regarding the microbial air quality, the fermentation area, storage room, milk reception and packaging room were the most AMB loaded places, while the ripening chamber was the area with higher fungal loads in bioareosol from both producers. Conveyor belts, cutting machine, storage boxes and brine tank were highlighted as the most contaminated FCS evaluated. Staphylococcus aureus was the only pathogen detected within the set of 51 isolates from samples as revealed by MALDI-TOF and molecular PCR, with a prevalence of 12.5% for samples from the producer B. The public health risk attributed to the consumption of artisanal goat cheese should not be neglected, and may consider the whole cheesemaking processing chain, from microbiological quality of raw milk to the ready-to-eat final product, especially concerning the presence of S. aureus.
Collapse
Affiliation(s)
- Olga María Bonilla-Luque
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, 14014, Córdoba, Spain.
| | - Arícia Possas
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, 14014, Córdoba, Spain.
| | - Marta L Cabo
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigacións Mariñas, CSIC, Eduardo Cabello, 6, 36208, Vigo, Spain.
| | - Pedro Rodríguez-López
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigacións Mariñas, CSIC, Eduardo Cabello, 6, 36208, Vigo, Spain; Department of Animal and Food Science, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Travessera Dels Turons S/n, 08193, Bellaterra, Cerdanyola Del Vallès, Spain.
| | - Antonio Valero
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes (ENZOEM), CeiA3, Universidad de Córdoba, Campus Rabanales, 14014, Córdoba, Spain.
| |
Collapse
|
16
|
Silva BN, Coelho-Fernandes S, Teixeira JA, Cadavez V, Gonzales-Barron U. Dynamic Modelling to Describe the Effect of Plant Extracts and Customised Starter Culture on Staphylococcus aureus Survival in Goat's Raw Milk Soft Cheese. Foods 2023; 12:2683. [PMID: 37509778 PMCID: PMC10379104 DOI: 10.3390/foods12142683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
This study characterises the effect of a customised starter culture (CSC) and plant extracts (lemon balm, sage, and spearmint) on Staphylococcus aureus (SA) and lactic acid bacteria (LAB) kinetics in goat's raw milk soft cheeses. Raw milk cheeses were produced with and without the CSC and plant extracts, and analysed for pH, SA, and LAB counts throughout ripening. The pH change over maturation was described by an empirical decay function. To assess the effect of each bio-preservative on SA, dynamic Bigelow-type models were adjusted, while their effect on LAB was evaluated by classical Huang models and dynamic Huang-Cardinal models. The models showed that the bio-preservatives decreased the time necessary for a one-log reduction but generally affected the cheese pH drop and SA decay rates (logDref = 0.621-1.190 days; controls: 0.796-0.996 days). Spearmint and sage extracts affected the LAB specific growth rate (0.503 and 1.749 ln CFU/g day-1; corresponding controls: 1.421 and 0.806 ln CFU/g day-1), while lemon balm showed no impact (p > 0.05). The Huang-Cardinal models uncovered different optimum specific growth rates of indigenous LAB (1.560-1.705 ln CFU/g day-1) and LAB of cheeses with CSC (0.979-1.198 ln CFU/g day-1). The models produced validate the potential of the tested bio-preservatives to reduce SA, while identifying the impact of such strategies on the fermentation process.
Collapse
Affiliation(s)
- Beatriz Nunes Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Sara Coelho-Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José António Teixeira
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
17
|
Delgado J, Álvarez M, Cebrián E, Martín I, Roncero E, Rodríguez M. Biocontrol of Pathogen Microorganisms in Ripened Foods of Animal Origin. Microorganisms 2023; 11:1578. [PMID: 37375080 PMCID: PMC10301060 DOI: 10.3390/microorganisms11061578] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Ripened foods of animal origin comprise meat products and dairy products, being transformed by the wild microbiota which populates the raw materials, generating highly appreciated products over the world. Together with this beneficial microbiota, both pathogenic and toxigenic microorganisms such as Listeria monocytogenes, Salmonella enterica, Staphylococcus aureus, Clostridium botulinum, Escherichia coli, Candida spp., Penicillium spp. and Aspergillus spp., can contaminate these products and pose a risk for the consumers. Thus, effective strategies to hamper these hazards are required. Additionally, consumer demand for clean label products is increasing. Therefore, the manufacturing sector is seeking new efficient, natural, low-environmental impact and easy to apply strategies to counteract these microorganisms. This review gathers different approaches to maximize food safety and discusses the possibility of their being applied or the necessity of new evidence, mainly for validation in the manufacturing product and its sensory impact, before being implemented as preventative measures in the Hazard Analysis and Critical Control Point programs.
Collapse
Affiliation(s)
| | | | | | | | | | - Mar Rodríguez
- Higiene y Seguridad Alimentaria, Instituto de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain; (J.D.); (M.Á.); (E.C.); (I.M.); (E.R.)
| |
Collapse
|
18
|
Abarca RL, Vargas F, Medina J, Paredes JC, López BC, Ortiz PA, Vargas-Bello-Pérez E. Development and Characterization of Films with Propolis to Inhibit Mold Contamination in the Dairy Industry. Foods 2023; 12:foods12081633. [PMID: 37107428 PMCID: PMC10138102 DOI: 10.3390/foods12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Due to the number of polyphenols with multiple biological activities, propolis has high potential to be used as an active agent in food protective films. Therefore, this study aimed to develop and characterize a sodium alginate film with ethanolic extract of propolis (EEP) for its potential use as protective active packaging against filamentous fungi in ripened cheese. Three different concentrations of EEP were analyzed: 0, 5 and 10% w/v. The films obtained were characterized, assessing thermal and physicochemical properties, as well as the concentration of polyphenols in the EEP and antifungal activity of the active films. The incorporation of EEP in the films generated thermal stability with respect to the loss of mass. Total color values (ΔE) of the films were affected by the incorporation of the different concentrations of EEP, showing a decrease in luminosity (L*) of the films, while the chromatic parameters a* and b* increased in direct proportion to the EEP concentration. Antifungal activity was observed with a fungistatic mode of action, stopping the growth of the fungus in cheeses without development of filamentous molds, thus increasing the shelf life of the ripened cheese under the analytical conditions, over 30 days at room temperature. Overall, EEP can be used to prevent growth and proliferation of spoilage microorganisms in cheese.
Collapse
Affiliation(s)
- Romina L Abarca
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile
| | - Francisco Vargas
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Agrarias, Universidad Austral, Avda. Julio Sarrazín s/n, Isla Teja, Valdivia 5090000, Chile
| | - Javiera Medina
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Agrarias, Universidad Austral, Avda. Julio Sarrazín s/n, Isla Teja, Valdivia 5090000, Chile
| | - Juan Carlos Paredes
- Instituto de Química, Facultad de Ciencia, Universidad Austral de Chile, Isla Teja, Valdivia 5090000, Chile
| | - Bernardo Carrillo López
- Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Agrarias, Universidad Austral, Avda. Julio Sarrazín s/n, Isla Teja, Valdivia 5090000, Chile
| | - Pablo A Ortiz
- Núcleo de Química y Bioquímica, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago 8580745, Chile
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading RG6 6EU, UK
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico R. Aldama Km 1, Chihuahua 31031, Mexico
| |
Collapse
|
19
|
Involvement of Versatile Bacteria Belonging to the Genus Arthrobacter in Milk and Dairy Products. Foods 2023; 12:foods12061270. [PMID: 36981196 PMCID: PMC10048301 DOI: 10.3390/foods12061270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Milk is naturally a rich source of many essential nutrients; therefore, it is quite a suitable medium for bacterial growth and serves as a reservoir for bacterial contamination. The genus Arthrobacter is a food-related bacterial group commonly present as a contaminant in milk and dairy products as primary and secondary microflora. Arthrobacter bacteria frequently demonstrate the nutritional versatility to degrade different compounds even in extreme environments. As a result of their metabolic diversity, Arthrobacter species have long been of interest to scientists for application in various industry and biotechnology sectors. In the dairy industry, strains from the Arthrobacter genus are part of the microflora of raw milk known as an indicator of hygiene quality. Although they cause spoilage, they are also regarded as important strains responsible for producing fermented milk products, especially cheeses. Several Arthrobacter spp. have reported their significance in the development of cheese color and flavor. Furthermore, based on the data obtained from previous studies about its thermostability, and thermoacidophilic and thermoresistant properties, the genus Arthrobacter promisingly provides advantages for use as a potential producer of β-galactosidases to fulfill commercial requirements as its enzymes allow dairy products to be treated under mild conditions. In light of these beneficial aspects derived from Arthrobacter spp. including pigmentation, flavor formation, and enzyme production, this bacterial genus is potentially important for the dairy industry.
Collapse
|
20
|
Rampanti G, Ferrocino I, Harasym J, Foligni R, Cardinali F, Orkusz A, Milanović V, Franciosa I, Garofalo C, Mannozzi C, Mozzon M, Osimani A, Aquilanti L. Queijo Serra da Estrela PDO Cheese: Investigation into Its Morpho-Textural Traits, Microbiota, and Volatilome. Foods 2022; 12:foods12010169. [PMID: 36613385 PMCID: PMC9818377 DOI: 10.3390/foods12010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Queijo Serra da Estrela is a PDO Portuguese cheese produced through coagulation of raw ewe’s milk using cardoon (Cynara cardunculus L.) flowers. The present research was aimed at depicting an up-to-date and comprehensive overview of the microbiota of Queijo Serra da Estrela cheese. To this end, viable counting and metataxonomic analysis were carried out on cheeses sampled from four Portuguese artisan producers. Physico-chemical and morpho-textural analyses were also performed, together with the analysis of volatile organic compounds (VOCs). Finally, non-starter lactic acid bacteria (NSLAB) isolated from the cheeses were characterized for their enzymatic activities using a semi-quantitative method. According to the metataxonomic analysis, Lactococcus lactis and Lactococcus piscium were the species occurring at the highest relative abundance. The isolates collected from the cheeses were assigned to Enterococcus durans, Enterococcus faecalis, Enterococcus faecium, Enterococcus lactis, Levilactobacillus brevis, Latilactobacillus graminis, Leuconostoc mesenteroides, and the Lacticaseibacillus casei group. The enzymatic characterization of these cultures highlighted esterase, aminopeptidase, acid phosphatase, beta-galactosidase, alpha-glucosidase, and beta-glucosidase among the major enzymatic activities. Fungal populations were dominated by Debaryomyces hansenii and Kurtzmaniella zeylanoides; however, species rarely found in cheese (e.g., Candida boidinii, Vishniacozyma victoriae, and Starmerella) were also detected. The volatile compounds characterizing the analyzed cheeses were carboxylic acids and esters, followed by carbonyl compounds and alcohols.
Collapse
Affiliation(s)
- Giorgia Rampanti
- Department of Agricultural Sciences, Food and Environmental, Marche Polytechnic University, 60131 Ancona, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53–345 Wrocław, Poland
| | - Roberta Foligni
- Department of Agricultural Sciences, Food and Environmental, Marche Polytechnic University, 60131 Ancona, Italy
| | - Federica Cardinali
- Department of Agricultural Sciences, Food and Environmental, Marche Polytechnic University, 60131 Ancona, Italy
| | - Agnieszka Orkusz
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, Komandorska 118/120, 53–345 Wrocław, Poland
| | - Vesna Milanović
- Department of Agricultural Sciences, Food and Environmental, Marche Polytechnic University, 60131 Ancona, Italy
| | - Irene Franciosa
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Cristiana Garofalo
- Department of Agricultural Sciences, Food and Environmental, Marche Polytechnic University, 60131 Ancona, Italy
| | - Cinzia Mannozzi
- Department of Agricultural Sciences, Food and Environmental, Marche Polytechnic University, 60131 Ancona, Italy
| | - Massimo Mozzon
- Department of Agricultural Sciences, Food and Environmental, Marche Polytechnic University, 60131 Ancona, Italy
| | - Andrea Osimani
- Department of Agricultural Sciences, Food and Environmental, Marche Polytechnic University, 60131 Ancona, Italy
- Correspondence:
| | - Lucia Aquilanti
- Department of Agricultural Sciences, Food and Environmental, Marche Polytechnic University, 60131 Ancona, Italy
| |
Collapse
|
21
|
Microbiological Quality and Safety of Traditional Raw Milk Cheeses Manufactured on a Small Scale by Polish Dairy Farms. Foods 2022; 11:foods11233910. [PMID: 36496718 PMCID: PMC9736345 DOI: 10.3390/foods11233910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Polish raw milk artisanal cheese may pose a threat to consumer safety due to pathogen presence. The aim of this study was to assess the microbiological safety, quality and physicochemical composition of cow’s and goat’s milk fresh cheeses produced by farmers on a small scale. A total of 62 samples of six cheese types were analyzed for Listeria monocytogenes, Salmonella spp., lactic acid bacteria and coliform presence and concentration levels. The physicochemical analysis estimated energy, water, protein, fat, carbohydrate, ash and salt content. The cheeses were also tested for heavy metal contamination. Listeria monocytogenes and Salmonella spp. were not detected in any of the samples. Coliforms were present in all the goat’s milk cheeses and only in two of the cow’s milk cheeses. Low levels of cadmium, below 0.008 ppm, were detected in three of the cows’ milk samples. The raw milk cheeses studied were free of the pathogens examined and were of high nutritional value.
Collapse
|
22
|
Santamarina-García G, Amores G, López de Armentia E, Hernández I, Virto M. Relationship between the Dynamics of Gross Composition, Free Fatty Acids and Biogenic Amines, and Microbial Shifts during the Ripening of Raw Ewe Milk-Derived Idiazabal Cheese. Animals (Basel) 2022; 12:3224. [PMID: 36428451 PMCID: PMC9686631 DOI: 10.3390/ani12223224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
This study reports for the first time the relationship between bacterial succession, characterized by high-throughput sequencing (sequencing of V3-V4 16S rRNA regions), and the evolution of gross composition, free fatty acids (FFAs) and biogenic amines (BAs) during cheese ripening. Specifically, Idiazabal PDO cheese, a raw ewe milk-derived semi-hard o hard cheese, was analysed. Altogether, 8 gross parameters were monitored (pH, dry matter, protein, fat, Ca, Mg, P and NaCl) and 21 FFAs and 8 BAs were detected. The ripening time influenced the concentration of most physico-chemical parameters, whereas the producer mainly affected the gross composition and FFAs. Through an O2PLS approach, the non-starter lactic acid bacteria Lactobacillus, Enterococcus and Streptococcus were reported as positively related to the evolution of gross composition and FFAs release, while only Lactobacillus was positively related to BAs production. Several environmental or non-desirable bacteria showed negative correlations, which could indicate the negative impact of gross composition on their growth, the antimicrobial effect of FFAs and/or the metabolic use of FFAs by these genera, and their ability to degrade BAs. Nonetheless, Obesumbacterium and Chromohalobacter were positively associated with the synthesis of FFAs and BAs, respectively. This research work provides novel information that may contribute to the understanding of possible functional relationships between bacterial communities and the evolution of several cheese quality and safety parameters.
Collapse
Affiliation(s)
- Gorka Santamarina-García
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitate Ibilbidea 7, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | - Gustavo Amores
- Lactiker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Unibertsitate Ibilbidea 7, 01006 Vitoria-Gasteiz, Basque Country, Spain
| | | | | | | |
Collapse
|
23
|
Martín I, Rodríguez A, García C, Córdoba JJ. Evolution of Volatile Compounds during Ripening and Final Sensory Changes of Traditional Raw Ewe’s Milk Cheese “Torta del Casar” Maturated with Selected Protective Lactic Acid Bacteria. Foods 2022; 11:foods11172658. [PMID: 36076843 PMCID: PMC9455757 DOI: 10.3390/foods11172658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
In traditional soft ripened cheeses made with raw milk, the use of protective cultures is infrequent. In the present work, the effect of selected (for their activity against Listeria monocytogenes) protective cultures of Lactocaseibacillus casei 116 and Lactococcus garvieae 151 was evaluated, on the evolution of volatile compounds throughout the ripening and on the final sensory characteristics of traditional soft ripened “Torta del Casar” cheese. For this, both strains were separately inoculated in raw cheeses and ripened for 90 days. The selected LAB strains did not affect physicochemical parameters, including texture and color of the ripened cheeses. However, they could have a positive effect on the aroma, for the generation of methyl branched acids and for the reduction in compounds derived from β-oxidation of fatty acids. Thus, these protective cultures, in addition to contributing to their safety, could improve quality of the ripened cheeses.
Collapse
Affiliation(s)
- Irene Martín
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias, s/n., 10003 Cáceres, Spain
| | - Alicia Rodríguez
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias, s/n., 10003 Cáceres, Spain
| | - Carmen García
- Tecnología y Calidad de Alimentos, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias, s/n., 10003 Cáceres, Spain
| | - Juan J. Córdoba
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias, s/n., 10003 Cáceres, Spain
- Correspondence:
| |
Collapse
|
24
|
Listeria monocytogenes survives better at lower storage temperatures in regular and low-salt soft and cured cheeses. Food Microbiol 2022; 104:103979. [DOI: 10.1016/j.fm.2022.103979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
|
25
|
Characterization of Microbial Shifts during the Production and Ripening of Raw Ewe Milk-Derived Idiazabal Cheese by High-Throughput Sequencing. BIOLOGY 2022; 11:biology11050769. [PMID: 35625497 PMCID: PMC9138791 DOI: 10.3390/biology11050769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Idiazabal is a traditional cheese produced from raw ewe milk in the Basque Country (Southwestern Europe). The sensory properties of raw milk cheeses have been attributed, among other factors, to microbial shifts that occur during the production and ripening processes. In this study, we used high-throughput sequencing technologies to investigate the microbiota of Latxa ewe raw milk and the dynamics during cheese production and ripening processes. The microbiota of raw milk was composed of lactic acid bacteria (LAB), environmental bacteria and non-desirable bacteria. Throughout the cheese making and ripening processes, the growth of LAB was promoted, whereas that of non-desirable and environmental bacteria was inhibited. Moreover, some genera not reported previously in raw ewe milk were detected and clear differences were observed in the bacterial composition of raw milk and cheese among producers, in relation to LAB and environmental or non-desirable bacteria, some of which could be attributed to the production of flavour related compounds. Abstract In this study, we used high-throughput sequencing technologies (sequencing of V3–V4 hypervariable regions of 16S rRNA gene) to investigate for the first time the microbiota of Latxa ewe raw milk and the bacterial shifts that occur during the production and ripening of Idiazabal cheese. Results revealed several bacterial genera not reported previously in raw ewe milk and cheese, such as Buttiauxella and Obesumbacterium. Both the cheese making and ripening processes had a significant impact on bacterial communities. Overall, the growth of lactic acid bacteria (LAB) (Lactococcus, Lactobacillus, Leuconostoc, Enterococcus, Streptococcus and Carnobacterium) was promoted, whereas that of non-desirable and environmental bacteria was inhibited (such as Pseudomonas and Clostridium). However, considerable differences were observed among producers. It is noteworthy that the starter LAB (Lactococcus) predominated up to 30 or 60 days of ripening and then, the growth of non-starter LAB (Lactobacillus, Leuconostoc, Enterococcus and Streptococcus) was promoted. Moreover, in some cases, bacteria related to the production of volatile compounds (such as Hafnia, Brevibacterium and Psychrobacter) also showed notable abundance during the first few weeks of ripening. Overall, the results of this study enhance our understanding of microbial shifts that occur during the production and ripening of a raw ewe milk-derived cheese (Idiazabal), and could indicate that the practices adopted by producers have a great impact on the microbiota and final quality of this cheese.
Collapse
|
26
|
Fagnani R, Damião BCM, Trentin RPS, Zanoni APK. Authenticity under threat: grated Parmesan cheese sold in Brazil. J DAIRY RES 2022; 89:1-5. [PMID: 35387695 DOI: 10.1017/s0022029922000310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This research communication depicts the quality and authenticity of grated Parmesan cheese sold in Brazil, with novel emphasis on ripening time. The sampling included all brands manufactured and packed at Brazilian dairy plants under federal inspection and sold in Londrina between June and September 2017. A total of 24 samples were analyzed (3 batches of 8 brands) for microbiological and compositional characteristics, including urea-PAGE electrophoresis for the quantitative determination of the milk proteins. About 80% of the samples were insufficiently ripened and 32% with low-fat content. Faced with these economically motivated food frauds, the authenticity of grated Parmesan in Brazil may be under threat. It is high recommended that future surveys and regulatory agencies go further than microbiological assessment, including and emphasizing the ripening time as the main parameter of grated Parmesan cheese.
Collapse
Affiliation(s)
- Rafael Fagnani
- Programa de Pós-graduação Stricto Sensu em Saúde e Produção Animal, Universidade Pitagoras Unopar, Arapongas, Paraná, Brazil
| | - Bruno Cesar Michelette Damião
- Programa de Pós-graduação Stricto Sensu em Ciência e Tecnologia de Leite e Derivados, Universidade Pitagoras Unopar, Londrina, Paraná, Brazil
| | - Régia Patrícia Saviani Trentin
- Programa de Pós-graduação Stricto Sensu em Ciência e Tecnologia de Leite e Derivados, Universidade Pitagoras Unopar, Londrina, Paraná, Brazil
| | - Ana Paula Kuller Zanoni
- Programa de Pós-graduação Stricto Sensu em Saúde e Produção Animal, Universidade Pitagoras Unopar, Arapongas, Paraná, Brazil
| |
Collapse
|
27
|
Chaidoutis E, Keramydas D, Papalexis P, Migdanis A, Migdanis I, Lazaris A, Kavantzas N. Foodborne botulism: A brief review of cases transmitted by cheese products (Review). Biomed Rep 2022; 16:41. [PMID: 35386113 PMCID: PMC8972315 DOI: 10.3892/br.2022.1524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Food safety constitutes a basic priority for public health. Foodborne botulism occurs worldwide; it is an acute paralytic disease caused by the consumption of food containing the botulinum toxin. Growing consumer demand for cheese products could result in increased exposure of the population to this toxin, and thus the risk of foodborne botulism. The majority of cases of botulism caused by dairy products are related to cheese products specifically. Epidemic outbreaks and isolated cases have been reported over time. Domestically canned foods are still among the primary causes of the disease. Cheese products are not regularly involved in botulism incidents; it is however, necessary to take control measures for manufacturing and domestic preparation due to the high risk of occurrence of this particular disease. The aim of this review is to discuss foodborne botulism caused by cheese products, providing a brief epidemiological history, and to examine certain control measures that should be taken throughout the production process to better protect public health.
Collapse
Affiliation(s)
- Elias Chaidoutis
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Keramydas
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Petros Papalexis
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios Migdanis
- Department of Gastroenterology, University of Thessaly, Faculty of Medicine, 41500 Larissa, Greece
| | - Ioannis Migdanis
- Department of Gastroenterology, University of Thessaly, Faculty of Medicine, 41500 Larissa, Greece
| | - Andreas Lazaris
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Kavantzas
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
28
|
Promoting the appreciation and marketability of artisanal Kochkäse (traditional German cheese): A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Icen H, Corbo MR, Sinigaglia M, Korkmaz BIO, Bevilacqua A. Using Microbial Responses Viewer and a Regression Approach to Assess the Effect of pH, Activity of Water and Temperature on the Survival of Campylobacter spp. Foods 2022; 11:foods11050637. [PMID: 35267270 PMCID: PMC8909359 DOI: 10.3390/foods11050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed at developing a model for evaluating the survival of various Campylobacter jejuni strains under different conditions in culture media and poultry data from ComBase. Campylobacter data of culture media (116) and poultry (19) were collected from Microbial Responses Viewer, an additional tool of ComBase. The Weibull equation was selected as a suitable model for the analysis of survival data because of the nonlinearity of survival curves. Then, the fitting parameters (first reduction time and shape parameter) were analysed through a Kruskall–Wallis test and box-whisker plots, thus pointing out the existence of two classes of temperature (0–12 °C and 15–25 °C) and pH (4–6.5 and 7–7.5) acting on the viability of C. jejuni. Finally, a general regression model was used to build a comprehensive function; all factors were significant, but temperature was the most significant variable, followed by pH and water activity. In addition, desirability and prediction profiles highlighted a negative correlation of the first reduction time with temperature and a positive correlation with pH and water activity.
Collapse
Affiliation(s)
- Hayrunisa Icen
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Marmara University, Maltepe, Istanbul 34854, Turkey;
| | - Maria Rosaria Corbo
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (M.R.C.); (M.S.)
| | - Milena Sinigaglia
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (M.R.C.); (M.S.)
| | - Burcu Irem Omurtag Korkmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Marmara University, Maltepe, Istanbul 34854, Turkey;
- Correspondence: (B.I.O.K.); (A.B.)
| | - Antonio Bevilacqua
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (M.R.C.); (M.S.)
- Correspondence: (B.I.O.K.); (A.B.)
| |
Collapse
|
30
|
Martín I, Rodríguez A, Delgado J, Córdoba JJ. Strategies for Biocontrol of Listeria monocytogenes Using Lactic Acid Bacteria and Their Metabolites in Ready-to-Eat Meat- and Dairy-Ripened Products. Foods 2022; 11:foods11040542. [PMID: 35206018 PMCID: PMC8871320 DOI: 10.3390/foods11040542] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens. This microorganism is a serious concern in the ready-to-eat (RTE) meat and dairy-ripened products industries. The use of lactic acid bacteria (LAB)-producing anti-L. monocytogenes peptides (bacteriocins) and/or lactic acid and/or other antimicrobial system could be a promising tool to control this pathogen in RTE meat and dairy products. This review provides an up to date about the strategies of use of LAB and their metabolites in RTE meat products and dairy foods by selecting the most appropriate strains, by analysing the mechanism by which they inhibit L. monocytogenes and methods of effective application of LAB, and their metabolites in these kinds of products to control this pathogen throughout the processing and storage. The selection of LAB with anti-L. monocytogenes activity allows to dispose of effective strains in meat and dairy-ripened products, achieving reductions form 2–5 logarithmic cycles of this pathogen throughout the ripening process. The combination of selected LAB strains with antimicrobial compounds, such as acid/sodium lactate and other strategies, as the active packaging could be the next future innovation for eliminating risk of L. monocytogenes in meat and dairy-ripened products.
Collapse
|
31
|
Loads of Coliforms and Fecal Coliforms and Characterization of Thermotolerant Escherichia coli in Fresh Raw Milk Cheese. Foods 2022; 11:foods11030332. [PMID: 35159482 PMCID: PMC8834472 DOI: 10.3390/foods11030332] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to assess the hygienic status of raw milk cheese and determine the trends of virulence and antimicrobial resistance in thermotolerant Escherichia coli. Two hundred samples of karish, a popular Egyptian fresh raw milk cheese, were analyzed for coliforms and fecal coliforms using a standard most probable number (MPN) technique. Overall, 85% of samples were unsuitable for consumption, as they exceeded Egyptian standards for coliforms (10 MPN/g), and 65% of samples exhibited coliforms at 44.5 °C. Of 150 recovered thermotolerant strains, 140 (93.3%) were identified as E. coli. Importantly, one Shiga toxin-producing E. coli (STEC) strain carrying a striking virulence pattern, stx1−, stx2+, eae−, was detected. Eleven strains (7.8%, 11/140) showed resistance to third-generation cephalosporins. Antibiotic resistance genes included blaSHV, blaCTX-M, qnrS, tet(A), and tet(B), which were present in 4.3%, 2.8%, 0.71%, 2.1%, and 0.71% of isolates, respectively. In conclusion, this study indicated that hygienic-sanitary failures occurred throughout the production process of most retail karish cheese. Furthermore, our findings emphasize the need for adopting third-generation cephalosporin-resistant E. coli as an indicator for monitoring antimicrobial resistance in raw milk cheese to identify the potential public health burden associated with its consumption.
Collapse
|
32
|
White Brined Cheese Production by Incorporation of a Traditional Milk-Cereal Prebiotic Matrix with a Candidate Probiotic Bacterial Strain. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of the present study is the evaluation of a novel potentially probiotic Lactobacillus paracasei SP5, previously isolated from dairy products, as a starter culture of white brined cheese production, either free or immobilized on a traditional food, “trahanas”, in order to provide protection to the starter culture and a prebiotic effect. All produced cheeses were compared with cheese manufactured by renin enzyme. Several parameters that affect the acceptability, quality, and shelf life of white brined cheese were investigated, including microbial populations, physicochemical characteristics, and cheese volatiles through 70 days of ripening and storage. White brined cheese production by free or immobilized L. paracasei SP5 resulted in significantly higher acidity (over 0.8 g of lactic acid/100 g of cheese at the 70th day of ripening) and significantly reduced counts (around 50%) of coliforms, yeasts, and fungi compared to cheese produced with no starter culture. The use of the freeze-dried novel starter culture, either free or immobilized, improved the aromatic profile of cheeses as was proven through a GC-MS analysis. In addition, it should be underlined that the application of the novel strain led to white brined cheese with improved overall quality and sensory characteristics. The results indicate the potential industrial use of freeze-dried L. paracasei SP5 as a starter culture for the production of good-quality functional white brined cheeses.
Collapse
|
33
|
Kasem NG, Al-Ashmawy M, Elsherbini M, Abdelkhalek A. Antimicrobial resistance and molecular genotyping of Escherichia coli and Staphylococcus aureus isolated from some Egyptian cheeses. J Adv Vet Anim Res 2021; 8:246-255. [PMID: 34395595 PMCID: PMC8280994 DOI: 10.5455/javar.2021.h509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Objective: This work investigated the antimicrobial resistance (AMR) and virulence of Escherichia coli and Staphylococcus aureus in communally consumed cheeses in Egypt. Materials and Methods: This study examined 100 samples of Domiati, Tallaga, Cheddar, and Ras cheese collected from several shops and supermarkets. Samples were spread on selective media to isolate bacterial strains. Molecular characterization of bacterial isolates was carried out using polymerase chain reaction to determine Shiga toxin 1 (stx1), Shiga toxin 2 (stx2), eaeA, and nuc genes. The isolates were tested for susceptibility to 14 antibiotics by disk diffusion assay. Results: In this study, several E. coli serotypes were identified. E. coli O26:H11, O103:H2, and O111:H2 expressed stx1/2, E. coli O114:H4 expressed stx1, E. coli O17:H18, O21:H7 and O146:H21 expressed stx2, while only E. coli O26:H11 and O111:H2 expressed eaeA. The E. coli isolates were resistant to at least one antibiotic, while most isolates (82.4%) showed multidrug resistance (MDR). AMR to erythromycin was the highest (100%), followed by nalidixic acid (94.1%), cefotaxime (82.4%), vancomycin and cephalothin (64.7%), penicillin G (52.9%), sulfamethoxazole (47.1%), amikacin and kanamycin (35.3%), ampicillin (29.4%), tetracycline and ciprofloxacin (23.5%), and doxycycline (11.8%), while gentamicin showed the least resistance (5.9%). The multiple antibiotic resistance (MAR) index of the isolated E. coli ranged from 0.071 to 1 (mean = 0.478). All S. aureus isolates expressed the nuc gene and demonstrated resistance to at least one antibiotic, and 90% of isolates were MDR. AMR to kanamycin and cephalothin was the highest (100%), followed by penicillin (90%), doxycycline (70%), nalidixic acid and sulfamethoxazole (60%), erythromycin (50%), tetracycline, cefotaxime, and gentamicin (40%), ciprofloxacin and ampicillin (30%), and amikacin (20%). In comparison, vancomycin showed the least resistance (10%). MAR index of isolated S. aureus ranged from 0.143 to 1 (mean = 0.529). Conclusion: The antimicrobial-resistant E. coli and S. aureus are potential risks for public health and may have a role in disseminating AMR to other pathogenic and non-pathogenic microbes.
Collapse
Affiliation(s)
- Nahed Gomaa Kasem
- Department of Food Control and Hygiene, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Maha Al-Ashmawy
- Department of Food Control and Hygiene, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammed Elsherbini
- Department of Food Control and Hygiene, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Adel Abdelkhalek
- Department of Food Control and Hygiene, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
34
|
Ahmed S, Muhammad T, Zaidi A. Cottage cheese enriched with lactobacilli encapsulated in alginate–chitosan microparticles forestalls perishability and augments probiotic activity. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sadia Ahmed
- National Probiotic Laboratory National Institute for Biotechnology and Genetic Engineering (NIBGE) Jhang Road Faisalabad38000Pakistan
- NIBGE_C, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Lehtrar Road Islamabad45650Pakistan
| | - Tariq Muhammad
- National Probiotic Laboratory National Institute for Biotechnology and Genetic Engineering (NIBGE) Jhang Road Faisalabad38000Pakistan
- NIBGE_C, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Lehtrar Road Islamabad45650Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory National Institute for Biotechnology and Genetic Engineering (NIBGE) Jhang Road Faisalabad38000Pakistan
- NIBGE_C, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Lehtrar Road Islamabad45650Pakistan
| |
Collapse
|
35
|
Lobacz A, Zulewska J. Fate of Salmonella spp. in the Fresh Soft Raw Milk Cheese during Storage at Different Temperatures. Microorganisms 2021; 9:microorganisms9050938. [PMID: 33925697 PMCID: PMC8146607 DOI: 10.3390/microorganisms9050938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to determine the survival kinetics of Salmonella spp. in unripened, fresh raw milk cheese during storage at 5, 15 and 25 °C. Microbiological (coliforms and E. coli, S. thermophilus, Lactococcus sp., total microbial count and Enterobacteriaceae) and physicochemical (pH and aw) characteristics were also determined. Two primary models were used to estimate the kinetic parameters of Salmonella spp., namely Weibull and Baranyi and Roberts (no lag) models. Additionally, goodness-of-fit of the primary models was assessed by calculating the R-Square and mean square error. Salmonella spp. growth in the unripened raw milk cheese was inhibited during storage, but nevertheless bacteria survived at 5 °C for 33 days (2.5 log cfu/g) and 15 °C for 18 days (1.8 log cfu/g). A decrease in the number of Salmonella spp. populations from an initial concentration 6.6 log cfu/g to below a detection limit was observed at 25 °C after 7 days of storage of contaminated cheese samples. It was concluded that the storage temperature significantly influenced the inactivation rate of Salmonella spp. in fresh raw milk cheese and proceeded faster at 25 °C compared to remaining storage temperatures.
Collapse
|