1
|
Zhu J, Zhu X, Yan B, Ren F, Chen B, Han Z, Yao X, He S, Liu H. Evaluation and categorization of various pea cultivars utilizing near-infrared spectroscopy in conjunction with multivariate statistical techniques. Food Chem 2025; 474:143268. [PMID: 39929047 DOI: 10.1016/j.foodchem.2025.143268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/12/2025]
Abstract
The swift detection of allergenic protein and other nutritional indicators in pea protein is crucial for food and breeding efforts, facilitating the targeted selection of specific pea varieties and the advancement and processing of healthful foods. Using near-infrared (NIR) spectroscopy, spectral data for different pea varieties in the range of 908-1676 nm were collected, which were subsequently integrated with chemical values obtained by conventional methods. Multivariate statistical analysis was employed to optimize, develop, and validate the model for the spectral data. The correlation coefficients of the calibration set based on partial least squares regression (PLSR) models ranged from 0.74 to 0.99, while those of the validation set ranged from 0.20 to 0.99. This study offers a precise and straightforward approach for evaluating the levels of several nutritional indicators, including allergenic proteins in peas, and for classifying different types.
Collapse
Affiliation(s)
- Jingwen Zhu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology and Business University), Beijing 100080, China
| | - Xuchun Zhu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology and Business University), Beijing 100080, China
| | - Bangyu Yan
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology and Business University), Beijing 100080, China
| | - Feiyue Ren
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology and Business University), Beijing 100080, China
| | - Bingyu Chen
- Graduate School of Agriculture, Kyoto University, Japan
| | - Zhaowei Han
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology and Business University), Beijing 100080, China
| | - Xinmiao Yao
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
| | - Shan He
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology and Business University), Beijing 100080, China.
| | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology and Business University), Beijing 100080, China.
| |
Collapse
|
2
|
Hurtado-Murillo J, Franco W, Contardo I. Impact of homolactic fermentation using Lactobacillus acidophilus on plant-based protein hydrolysis in quinoa and chickpea flour blended beverages. Food Chem 2025; 463:141110. [PMID: 39243613 DOI: 10.1016/j.foodchem.2024.141110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
In this study, three beverages formulated with quinoa and chickpea flour blends were fermented using Lactobacillus acidophilus LA-5 to assess the effect of lactic acid fermentation on the degree of hydrolysis of plant-based proteins. Additionally, the impact of quinoa and chickpea blends on the protein content and protein solubility in the beverages was evaluated. Fermentation was completed within 10 h, resulting in a decrease in the pH (<4.3) and an increase in titratable acidity and lactic acid (>0.37 % and > 1.7 g/L), respectively. SDS-PAGE and the O-phthalaldehyde method revealed hydrolysis of quinoa and chickpea proteins. A quinoa-to-chickpea ratio of 50 % exhibited the highest protein content (>2 %), solubility (43.6 %), and hydrolysis (35.9 %) after fermentation, indicating that an increase in chickpea improved these parameters in the prepared PBBs. Overall, fermentation using Lactobacillus acidophilus increased plant protein hydrolysis, and legume addition improved the protein content and the nutritional value of plant-based beverages.
Collapse
Affiliation(s)
- John Hurtado-Murillo
- Department of Chemical Engineering and Bioprocesses, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackena 4860, Santiago 7820436, Chile.
| | - Wendy Franco
- Department of Chemical Engineering and Bioprocesses, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackena 4860, Santiago 7820436, Chile.
| | - Ingrid Contardo
- Biopolymer Research & Engineering Laboratory (BiopREL), School of Nutrition and Dietetics, Faculty of Medicine, Universidad de los Andes, Chile, Monseñor Álvaro del Portillo 12.455, Las Condes 7550000, Chile; Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Chile, Monseñor Álvaro del Portillo 12.455, Las Condes 7620086, Chile.
| |
Collapse
|
3
|
Bhuiyan MHR, Liu L, Samaranayaka A, Ngadi M. Characterization of pea composites and feasibility of heat-modulated meat analogs production. Food Chem 2025; 463:141282. [PMID: 39293383 DOI: 10.1016/j.foodchem.2024.141282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
This study aimed to characterize pea composites' functionalities and investigate the feasibility of pea composites-based heat modulated meat analog (MA) production. Pea composites (concentrate, flour) were used as the main source of plant-proteins in preparation of MA. Techno-functional, sensorial, microstructural, chemical, and thermal characteristics of pea composites as well as the prepared MAs were investigated. Results showed that, protein content and particles size significantly (p < 0.05) influenced the water holding capacity (0.94 g/g ± 0.03-1.17 g/g ± 0.08), oil holding capacity (1.08 g/g ± 0.02-1.32 g/g ± 0.04), foaming capacity (49.20 % ± 0.12-58.9 % ± 0.98), foam stability (63.15 % ± 0.21-71.82 % ± 0.68), emulsion stability (61.73 % ± 1.68-66.02 % ± 1.25), least gelation concentration (at pH 7: 8.02 % ± 0.91-18.02 % ± 0.21), and solubility (at pH 7:70.51 % ± 2.54-93.71 % ± 1.86) of studied pea composites; that subsequently influenced the formation of heat-modulated MAs. Color, stickiness, moldability, microstructure (surface plot, fractal dimension: 2.771 ± 0.006-2.884 ± 0.009, surface openings: 8.76 % ± 1.25-33.24 % ± 1.28), thermal (denaturization temperature:103.41 °C ± 3.87-161.20 °C ± 1.35, enthalpy: 1085.10 J/g ± 115.42-1322.71 J/g ± 185.65), and chemical attributes of MAs were associated with the protein content (25.30 % ± 0.98-60.30 % ± 1.87) and particle size (d10:2.30 μm ± 0.32-15.02 μm ± 1.35; d50:6.30 μm ± 1.02-59.01 μm ± 2.35; d90:15.11 μm ± 2.34-137.01 μm ± 15.21) of pea composites. MA formulated with pea flour showed better moldability and acceptability in comparison to pea concentrates. This study exposed the use of pea flour as a feasible option to produce heat modulated meat analogs.
Collapse
Affiliation(s)
- Md Hafizur Rahman Bhuiyan
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| | - Laura Liu
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Anusha Samaranayaka
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Michael Ngadi
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
4
|
Vilas-Franquesa A, Lakemond C, Mishyna M. Biotransformation of insect processing residues: Production of lactic acid bacterial biomass and associated partial removal of proteins from chitin. BIORESOURCE TECHNOLOGY 2024; 413:131540. [PMID: 39341428 DOI: 10.1016/j.biortech.2024.131540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Processing of edible insects typically involves fractionating into high-value food ingredients, which results in by-products containing chitin and insoluble proteins. This study examined the effectiveness of lactic acid bacteria (LAB) in removing proteins from chitin in insect processing residues. Lesser mealworm processing residues were biologically treated for 48 and 120 h using LAB strains without added carbon sources. Results showed partial deproteinization, up to 29 % with Levilactobacillus brevis after 120 h. Most LAB grew up to 2 log10 colony-forming units/mL in the first 48 h. Confocal microscopy and Fourier-transform infrared spectra indicated that some protein remained attached to chitin. The molecular weight of solubilized proteins was affected by strain and time of incubation, with antioxidant activity increasing significantly after 120 h with Lacticaseibacillus paracasei. The biological treatment of insect processing streams can be a sustainable approach to producing high amounts of LAB biomass with subsequent protein solubilization and chitin release.
Collapse
Affiliation(s)
- Arnau Vilas-Franquesa
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, 6700 AA Wageningen, the Netherlands; Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Catriona Lakemond
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, 6700 AA Wageningen, the Netherlands
| | - Maryia Mishyna
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
5
|
Huang J, Zhang M, Mujumdar AS, Semenov G, Luo Z. Technological advances in protein extraction, structure improvement and assembly, digestibility and bioavailability of plant-based foods. Crit Rev Food Sci Nutr 2024; 64:11556-11574. [PMID: 37498207 DOI: 10.1080/10408398.2023.2240892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Plant-based foods are being considered seriously to replace traditional animal-origin foods for various reasons. It is well known that animals release large amounts of greenhouse gases into the environment during feeding, and eating animal-origin foods may also cause some health problems. Moreover, animal resources will likely be in short supply as the world population grows. It is highly likely that serious health problems ascribed to insufficient protein intake in some areas of the world will occur. Studies have shown that environmentally friendly, abundant, and customizable plant-based foods can be an effective alternative to animal-based foods. However, currently, available plant-based foods lack nutrients unique to animal-based foods. Innovative processing technologies are needed to improve the nutritional value and functionality of plant-based foods and make them acceptable to a wider range of consumers. Therefore, protein extraction technologies (e.g., high-pressure extraction, ultrasound extraction, enzyme extraction, etc.), structure improvement and assembly technologies (3D printing, micro-encapsulation, etc.), and technologies to improve digestibility and utilization of bioactive substances (microbial fermentation, physical, etc.) in the field of plant-based foods processing are reviewed. The challenges of plant-based food processing technologies are summarized. The advanced technologies aim to help the food industry solve production problems using efficient, environmentally friendly, and economical processing technologies and to guide the development of plant-based foods in the future.
Collapse
Affiliation(s)
- Jinjin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Gennady Semenov
- Laboratory of Freeze-Drying, Russian Biotechnological University, Moscow, Russia
| | - Zhenjiang Luo
- R&D Center, Haitong Ninghai Foods Co., Ltd, Ninghai, Zhejiang, China
| |
Collapse
|
6
|
Lyu H, Hernalsteens S, Cong H, Quek SY, Chen XD. Solid state fermentation of mung beans by Bacillus subtilis subsp. natto on static, shaking flask and soft elastic tubular reactors. FOOD SCI TECHNOL INT 2024; 30:623-635. [PMID: 36911978 DOI: 10.1177/10820132231162167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Given that mung beans constitute a significant nutrient source in many cultures, it is worthwhile to investigate ways to improve their nutritional and functional properties. The effect of fermentation of mung beans by Bacillus subtilis subsp. natto was investigated in various reactor designs, including static, shaking flasks, and soft elastic tubular reactors (SETR). The results showed that all three processes might affect the substrate, resulting in changes in the protein and carbohydrate fractions. We noticed an increase in soluble protein and serine levels, which we attribute to the proteases produced during fermentation. Through XRD, FTIR, and DSC analyses, it was also discovered that whereas static and shaking flask fermentation might raise relative crystallinity and peak temperature, fermentation performed on the SETR decreased these values. It was also possible to notice that SETR might induce a change in the particle size distribution of the substrate through a complex impact of mechanical forces, mixing, and microbial activity, which could be helpful to some aspects of the process. To summarize, fermentation of mung beans by Bacillus. subtilis subsp. natto could be an attractive approach for producing a food ingredient with various functional and nutritional properties. Furthermore, the SETR has been shown to be a viable technique for dealing with high solid load substrates, whether as the reactor for the entire process or as a first stage/pre-treatment step, and its applicability in bioprocesses should be explored further.
Collapse
Affiliation(s)
- He Lyu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Saartje Hernalsteens
- School of Chemical and Environmental Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Haihua Cong
- Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, Jiangsu Province, China
| | - S-Y Quek
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Xiao Dong Chen
- School of Chemical and Environmental Engineering, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Kurbanova I, Lauciene L, Kondrotiene K, Zakariene G, Radenkovs V, Kiselioviene S, Salaseviciene A, Vasiliauskaite A, Malakauskas M, Musulmanova M, Serniene L. Physicochemical, Sensory, and Microbiological Analysis of Fermented Drinks Made from White Kidney Bean Extract and Cow's Milk Blends during Refrigerated Storage. Microorganisms 2024; 12:1832. [PMID: 39338506 PMCID: PMC11433744 DOI: 10.3390/microorganisms12091832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Due to its low dietary impact and bioactive compounds, such as polyphenols and flavonoids, white kidney bean extract is an attractive raw material for fermented drinks. It can be utilized either on its own or blended with cow's milk, offering a promising solution to help meet dairy product demand during mid-season shortages. Therefore, this study aimed to explore the physicochemical characteristics, sensory properties, and microbiological profile of fermented milk-like drinks made from white kidney bean extract, cow's milk and their blends during 28 days of storage at 4 °C. Three blends of fermented milk-like drinks (FMLDs) were prepared from different ratios of cow's milk (CM) and kidney bean extract (BE): FMLD1 (CM 30%:BE 70%); FMLD2 (CM 50%:BE 50%), FMLD3 (CM 70%:BE 30%), along with plain fermented kidney been extract (FBE; CM 0%:BE 100%), and plain fermented cow's milk (FCM; CM 100%:BE 0%). The mixtures were pasteurized at 92 °C for 25 min and fermented with a probiotic-type starter culture (S. thermophilus, B. bifidum, L. acidophilus) at 43 °C. FBE exhibited the lowest levels of carbohydrates (2.14%), fat (0.11%), and protein (1.45%) compared to fermented cow's milk and blends. The FBE and the fermented blends with a higher ratio of bean extract had lower viscosity and lactic acid contents, greener hue, more pronounced aftertaste and off-flavors, and received lower overall acceptability scores. Although the FCM had higher counts of S. thermophilus and L. acidophilus, the FBE displayed significantly higher counts of B. bifidum. This study demonstrated the potential of using white kidney bean extract and its blends with cow's milk to create unique fermented products with a lower dietary impact, highlighting the importance of further optimizing the formulations to enhance sensory qualities and reduce the beany off-flavors in the products with added kidney bean extract.
Collapse
Affiliation(s)
- Ibaratkan Kurbanova
- Department of Food Production Technology, Kyrgyz State Technical University Named after I. Razzakov, 66, Chyngyz Aitmatov Ave, Bishkek 720044, Kyrgyzstan
| | - Lina Lauciene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Kristina Kondrotiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Gintare Zakariene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Vitalijs Radenkovs
- Research Laboratory of Biotechnology, Division of Smart Technologies, Latvia University of Life Sciences and Technologies, Riga Str. 22B, LV-3004 Jelgava, Latvia
- Institute of Horticulture (LatHort), LV-3701 Dobele, Latvia
| | - Sandra Kiselioviene
- Food Institute, Kaunas University of Technology, Radvilenu Str. 19, LT-44239 Kaunas, Lithuania
| | - Alvija Salaseviciene
- Food Institute, Kaunas University of Technology, Radvilenu Str. 19, LT-44239 Kaunas, Lithuania
| | - Agne Vasiliauskaite
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Mindaugas Malakauskas
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Mukarama Musulmanova
- Department of Food Production Technology, Kyrgyz State Technical University Named after I. Razzakov, 66, Chyngyz Aitmatov Ave, Bishkek 720044, Kyrgyzstan
| | - Loreta Serniene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
8
|
Emkani M, Gourrat K, Oliete B, Saurel R. Identification of volatile and odor-active compounds in pea protein fractions obtained by a modified extraction method using fermentation. J Food Sci 2024; 89:4229-4249. [PMID: 38875321 DOI: 10.1111/1750-3841.17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
This study investigates the aromatic composition of pea albumin and globulin fractions obtained through either fermentation or conventional acidification using hydrochloric acid (control) toward the isoelectric point of pea globulins. Different lactic acid bacteria were used including S. thermophilus (ST), L. plantarum (LP), and their coculture (STLP). The volatile compounds were extracted by solvent-assisted flavor evaporation technique and quantified by gas chromatography-mass spectrometry (GC-MS). Odor-active compounds (OAC) were further characterized by gas chromatography-olfactometry (GC-O). In total, 96 volatile and 36 OACs were identified by GC-MS and GC-O, respectively. The results indicated that the protein fractions obtained by conventional acidification were mainly described by green notes for the presence of different volatile compounds such as hexanal. However, the samples obtained by fermentation had a lower content of these volatile compounds. Moreover, protein fractions obtained by coculture fermentation were described by volatile compounds associated with fruity, floral, and lactic notes. PRACTICAL APPLICATION: The insights from this study on pea protein aroma could find practical use in the food industry to enhance the sensory qualities of plant-based products. By utilizing fermentation methods and specific lactic acid bacteria combinations, manufacturers may produce pea protein with reduced undesirable green notes, offering consumers food options with improved flavors. This research may contribute to the development of plant-based foods that not only provide nutritional benefits but also meet consumer preferences for a more appealing taste profile.
Collapse
Affiliation(s)
- Mehrsa Emkani
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, PAM UMR A 02.102, Dijon, France
| | - Karine Gourrat
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne, Dijon, France
- CNRS, INRAE, PROBE Research Infrastructure, ChemoSens facility, Dijon, France
| | - Bonastre Oliete
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, PAM UMR A 02.102, Dijon, France
| | - Rémi Saurel
- Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
9
|
Sun R, Yang B, Yang C, Jin Y, Sui W, Zhang G, Wu T. Reduction of Beany Flavor and Improvement of Nutritional Quality in Fermented Pea Milk: Based on Novel Bifidobacterium animalis subsp. lactis 80. Foods 2024; 13:2099. [PMID: 38998605 PMCID: PMC11241321 DOI: 10.3390/foods13132099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Peas (Pisum sativum L.) serve as a significant source of plant-based protein, garnering consumer attention due to their high nutritional value and non-GMO modified nature; however, the beany flavor limits its applicability. In this study, the effects of Bifidobacterium animalis subsp. Lactis 80 (Bla80) fermentation on the physicochemical characteristics, particle size distribution, rheological properties, and volatile flavor compounds of pea milk was investigated. After fermentation by Bla80, the pH of pea milk decreased from 6.64 ± 0.01 to 5.14 ± 0.01, and the (D4,3) distribution decreased from 142.4 ± 0.47 μm to 122.7 ± 0.55 μm. In addition, Lactic acid bacteria (LAB) fermentation significantly reduced the particle size distribution of pea milk, which was conducive to improving the taste of pea milk and also indicated that Bla80 had the probiotic potential of utilizing pea milk as a fermentation substrate. According to GC-MS analysis, 64 volatile compounds were identified in fermented pea milk and included aldehydes, alcohols, esters, ketones, acids, and furans. Specifically, aldehydes in treated samples decreased by 27.36% compared to untreated samples, while esters, ketones, and alcohols increased by 11.07%, 10.96%, and 5.19%, respectively. These results demonstrated that Bla80 fermentation can significantly decrease the unpleasant beany flavor, such as aldehydes and furans, and increase fruity or floral aromas in treated pea milk. Therefore, Bla80 fermentation provides a new method to improve physicochemical properties and consumer acceptance of fermented pea milk, eliminating undesirable aromas for the application of pea lactic acid bacteria beverage.
Collapse
Affiliation(s)
- Ronghao Sun
- Engineering Research Center of Food Biotechnology, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bochun Yang
- Engineering Research Center of Food Biotechnology, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Conghao Yang
- Engineering Research Center of Food Biotechnology, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Jin
- Engineering Research Center of Food Biotechnology, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- Engineering Research Center of Food Biotechnology, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Guohua Zhang
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Tao Wu
- Engineering Research Center of Food Biotechnology, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
10
|
Du Q, Li H, Tu M, Wu Z, Zhang T, Liu J, Ding Y, Zeng X, Pan D. Legume protein fermented by lactic acid bacteria: Specific enzymatic hydrolysis, protein composition, structure, and functional properties. Colloids Surf B Biointerfaces 2024; 238:113929. [PMID: 38677155 DOI: 10.1016/j.colsurfb.2024.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
In recent years, with increasing emphasis on healthy, green, and sustainable consumption concepts, plant-based foods have gained popularity among consumers. As widely sourced plant-based raw materials, legume proteins are considered sustainable and renewable alternatives to animal proteins. However, legume proteins have limited functional properties, which hinder their application in food products. LAB fermentation is a relatively natural processing method that is safer than chemical/physical modification methods and can enrich the functional properties of legume proteins through biodegradation and modification. Therefore, changes in legume protein composition, structure, and functional properties and their related mechanisms during LAB fermentation are described. In addition, the specific enzymatic hydrolysis mechanisms of different LAB proteolytic systems on legume proteins are also focused in this review. The unique proteolytic systems of different LAB induce specific enzymatic hydrolysis of legume proteins, resulting in the production of hydrolysates with diverse functional properties, including solubility, emulsibility, gelability, and foamability, which are determined by the composition (peptide/amino acid) and structure (secondary/tertiary) of legume proteins after LAB fermentation. The correlation between LAB-specific enzymatic hydrolysis, protein composition and structure, and protein functional properties will assist in selecting legume protein raw materials and LAB strains for legume plant-based food products and expand the application of legume proteins in the food industry.
Collapse
Affiliation(s)
- Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Hang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Tao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| |
Collapse
|
11
|
Nisov A, Valtonen A, Aisala H, Spaccasassi A, Walser C, Dawid C, Sozer N. Effect of peptide formation during rapeseed fermentation on meat analogue structure and sensory properties at different pH conditions. Food Res Int 2024; 180:114070. [PMID: 38395559 DOI: 10.1016/j.foodres.2024.114070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
This study aimed to modify the sensory properties of rapeseed protein concentrate using a combination of fermentation and high-moisture extrusion processing for producing meat analogues. The fermentation was carried out with Lactiplantibacillus plantarum and Weissella confusa strains, known for their flavour and structure-enhancing properties. Contrary to expectations, the sensory evaluation revealed that the fermentation induced bitterness and disrupted the fibrous structure formation ability due to the generation of short peptides. On the other hand, fermentation removed the intensive off-odour and flavour notes present in the native raw material. Several control treatments were produced to understand the reasons behind the hindered fibrous structure formation and induced bitterness. The results obtained from peptidomics, free amino ends, and solubility analyses strongly indicated that the proteins were hydrolysed by endoproteases activated during the fermentation process. Furthermore, it was suspected that the proteins and/or peptides formed complexes with other components, such as hydrolysis products of glucosinolates and polysaccharides.
Collapse
Affiliation(s)
- Anni Nisov
- VTT Technical Research Centre of Finland, Ltd, P.O. Box 1000, FI-02044, Finland.
| | - Anniina Valtonen
- VTT Technical Research Centre of Finland, Ltd, P.O. Box 1000, FI-02044, Finland
| | - Heikki Aisala
- VTT Technical Research Centre of Finland, Ltd, P.O. Box 1000, FI-02044, Finland.
| | - Andrea Spaccasassi
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany.
| | - Christoph Walser
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany.
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany.
| | - Nesli Sozer
- VTT Technical Research Centre of Finland, Ltd, P.O. Box 1000, FI-02044, Finland.
| |
Collapse
|
12
|
Aidoo R, Kwofie EM, Adewale P, Lam E, Ngadi M. Designing sustainable circular bioeconomy solutions for the pulse industry: The case of crude pea starch as a substrate for single cell protein production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169029. [PMID: 38056673 DOI: 10.1016/j.scitotenv.2023.169029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Valorization of crude pea starch has become a key focus in the pea industry's sustainability pursuit. This study aimed to explore the circularity potential of crude pea starch as a nutrient-dense substrate for the solid-state cultivation of yeast (Saccharomyces cerevisiae) Single Cell Protein (SCP). Following the ISO 2006:14040/44 standard, a life cycle assessment (LCA) was performed to ascertain the environmental performance and operational dynamics of baseline and scenario pea starch-based yeast SCP process designs and identify optimal design considerations. Results demonstrated a higher relative contribution to the toxicity categories, with a relatively less contribution to global warming and land use. The distribution and media enrichment processes were identified as the hotspots, contributing about 32-55 % and 40-56 % to global warming and land use, respectively. Generally, train and air freight were more sustainable than lorry freight, respective of mileage and mass. Regarding system alteration, eliminating the media enrichment process could offset about 26 % of land footprint, with a similar trend for most impact categories. Process benchmarking showed up to a 3-fold reduction in global warming impacts relative to soybean meal, and about 71 % offset relative to fishmeal. Consequential LCA showed a general sustainability preference for substituting the aquacultural feeds with pea starch-based SCP, with a stronger emphasis on fishmeal substitution. Overall, these findings highlight the potential of the proposed SCP design as a sustainable upcycling solution with substitutionary potentials for conventional food and feeds, recommending further exploration in value and wealth creation.
Collapse
Affiliation(s)
- Raphael Aidoo
- Bioresource Engineering Department, McGill University, 21 111, Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Ebenezer M Kwofie
- Bioresource Engineering Department, McGill University, 21 111, Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Peter Adewale
- National Research Council Canada, Aquatic and Crop Resource Development Research Centre, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada.
| | - Edmond Lam
- National Research Council Canada, Aquatic and Crop Resource Development Research Centre, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada; Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| | - Michael Ngadi
- Bioresource Engineering Department, McGill University, 21 111, Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
13
|
Emkani M, Moundanga S, Oliete B, Saurel R. Protein composition and nutritional aspects of pea protein fractions obtained by a modified isoelectric precipitation method using fermentation. Front Nutr 2023; 10:1284413. [PMID: 38024383 PMCID: PMC10652897 DOI: 10.3389/fnut.2023.1284413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Pea albumins are promising for their nutritional, biological, and techno-functional properties. However, this fraction is usually discarded in the industry due to its low protein content compared to globulin fraction and the presence of some anti-nutritional compounds. In the present study, we used an alternative method of pea protein extraction based on alkaline solubilization/isoelectric precipitation in which the reduction of pH was achieved by lactic acid fermentation using specific starters instead of mineral acids. Hence, the main objective of this study was to examine the protein profile and the content of anti-nutritional and nutritional active compounds in pea albumin-rich fractions obtained by the isoelectric extraction method without (control) or with fermentation with different lactic acid bacteria (Streptococcus thermophilus, Lactiplantibacillus plantarum, and their co-culture). Different pea cultivars (Cartouche, Ascension, and Assas) were used here for their differences in protein profile. The results revealed a higher total nitrogen content in albumin-rich fraction for fermented samples and, in particular, for co-culture. The majority of total nitrogen was determined as non-protein (~50%), suggesting the degradation of proteins by LAB to small peptides and amino acids, which were solubilized in the soluble fraction (albumin) as confirmed by size exclusion chromatography (SEC-HPLC) analysis. Moreover, the higher antioxidant activity of fermented albumin samples was attributed to the production of small peptides during extraction. Lactic acid fermentation also resulted in a significant reduction of trypsin inhibitor activity, α-galactoside, and phytic acid content of this fraction compared to control.
Collapse
Affiliation(s)
| | | | | | - Rémi Saurel
- Univ. Bourgogne Franche-Comté, L'Institut Agro Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| |
Collapse
|
14
|
Asen ND, Aluko RE, Martynenko A, Utioh A, Bhowmik P. Yellow Field Pea Protein ( Pisum sativum L.): Extraction Technologies, Functionalities, and Applications. Foods 2023; 12:3978. [PMID: 37959097 PMCID: PMC10648759 DOI: 10.3390/foods12213978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Yellow field peas (Pisum sativum L.) hold significant value for producers, researchers, and ingredient manufacturers due to their wealthy composition of protein, starch, and micronutrients. The protein quality in peas is influenced by both intrinsic factors like amino acid composition and spatial conformations and extrinsic factors including growth and processing conditions. The existing literature substantiates that the structural modulation and optimization of functional, organoleptic, and nutritional attributes of pea proteins can be obtained through a combination of chemical, physical, and enzymatic approaches, resulting in superior protein ingredients. This review underscores recent methodologies in pea protein extraction aimed at enhancing yield and functionality for diverse food systems and also delineates existing research gaps related to mitigating off-flavor issues in pea proteins. A comprehensive examination of conventional dry and wet methods is provided, in conjunction with environmentally friendly approaches like ultrafiltration and enzyme-assisted techniques. Additionally, the innovative application of hydrodynamic cavitation technology in protein extraction is explored, focusing on its prospective role in flavor amelioration. This overview offers a nuanced understanding of the advancements in pea protein extraction methods, catering to the interests of varied stakeholders in the field.
Collapse
Affiliation(s)
- Nancy D. Asen
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (N.D.A.); (R.E.A.)
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (N.D.A.); (R.E.A.)
- Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Alex Martynenko
- Department of Engineering, Dalhousie University, Agricultural Campus, P.O. Box 550, Truro, NS B2N 5E3, Canada;
| | - Alphonsus Utioh
- ACU Food Technology Services Inc., 64 Laverendrye Crescent, Portage la Prairie, MB R1N 1B2, Canada;
| | - Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| |
Collapse
|
15
|
Tangyu M, Fritz M, Tan JP, Ye L, Bolten CJ, Bogicevic B, Wittmann C. Flavour by design: food-grade lactic acid bacteria improve the volatile aroma spectrum of oat milk, sunflower seed milk, pea milk, and faba milk towards improved flavour and sensory perception. Microb Cell Fact 2023; 22:133. [PMID: 37479998 PMCID: PMC10362582 DOI: 10.1186/s12934-023-02147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The global market of plant-based milk alternatives is continually growing. Flavour and taste have a key impact on consumers' selection of plant-based beverages. Unfortunately, natural plant milks have only limited acceptance. Their typically bean-like and grassy notes are perceived as "off-flavours" by consumers, while preferred fruity, buttery, and cheesy notes are missing. In this regard, fermentation of plant milk by lactic acid bacteria (LAB) appears to be an appealing option to improve aroma and taste. RESULTS In this work, we systematically studied LAB fermentation of plant milk. For this purpose, we evaluated 15 food-approved LAB strains to ferment 4 different plant milks: oat milk (representing cereal-based milk), sunflower seed milk (representing seed-based milk), and pea and faba milk (representing legume-based milk). Using GC‒MS analysis, flavour changes during anaerobic fermentations were studied in detail. These revealed species-related and plant milk-related differences and highlighted several well-performing strains delivered a range of beneficial flavour changes. A developed data model estimated the impact of individual flavour compounds using sensory scores and predicted the overall flavour note of fermented and nonfermented samples. Selected sensory perception tests validated the model and allowed us to bridge compositional changes in the flavour profile with consumer response. CONCLUSION Specific strain-milk combinations provided quite different flavour notes. This opens further developments towards plant-based products with improved flavour, including cheesy and buttery notes, as well as other innovative products in the future. S. thermophilus emerged as a well-performing strain that delivered preferred buttery notes in all tested plant milks. The GC‒MS-based data model was found to be helpful in predicting sensory perception, and its further refinement and application promise enhanced potential to upgrade fermentation approaches to flavour-by-design strategies.
Collapse
Affiliation(s)
- Muzi Tangyu
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michel Fritz
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Lijuan Ye
- Nestlé Research Center, Lausanne, Switzerland
| | - Christoph J. Bolten
- Nestlé Research Center, Lausanne, Switzerland
- Nestlé Product Technology Center Food, Singen, Germany
| | | | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
16
|
Kuang J, Hamon P, Lechevalier V, Saurel R. Thermal Behavior of Pea and Egg White Protein Mixtures. Foods 2023; 12:2528. [PMID: 37444266 DOI: 10.3390/foods12132528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The partial substitution of animal protein by plant protein is a new opportunity to produce sustainable food. Hence, to control the heat treatment of a composite protein ingredient, this work investigated the thermal behavior of mixtures of raw egg white (EW) and a laboratory-prepared pea protein isolate (PPI). Ten-percentage-by-weight protein suspensions prepared with different PPI/EW weight ratios (100/0, 75/25, 50/50, 25/75, 0/100) at pH 7.5 and 9.0 were analyzed by differential scanning calorimetry (DSC) and dynamic rheology in temperature sweep mode (T < 100 °C). The DSC data revealed changes in the thermal denaturation temperatures (Td) of ovotransferrin, lysozyme, and pea legumin, supposing interactions between proteins. Denaturation enthalpy (∆H) showed a high pH dependence related to pea protein unfolding in alkaline conditions and solubility loss of some proteins in admixture. Upon temperature sweeps (25-95 °C), the elastic modulus (G') of the mixtures increased significantly with the EW content, indicating that the gel formation was governed by the EW protein. Two thermal sol-gel transitions were found in EW-containing systems. In particular, the first sol-gel transition shifted by approximately +2-3 °C at pH 9.0, probably by a steric hindering effect due to the presence of denatured and non-associated pea globulins at this pH.
Collapse
Affiliation(s)
- Jian Kuang
- PAM UMR A 02.102, L'Institut Agro Dijon, Université Bourgogne Franche-Comté, F-21000 Dijon, France
- INRAE, L'Institut Agro Rennes-Angers, UMR STLO, F-35042 Rennes, France
| | - Pascaline Hamon
- INRAE, L'Institut Agro Rennes-Angers, UMR STLO, F-35042 Rennes, France
| | | | - Rémi Saurel
- PAM UMR A 02.102, L'Institut Agro Dijon, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
17
|
Liu Y, Zhu S, Li Y, Sun F, Huang D, Chen X. Alternations in the multilevel structures of chickpea protein during fermentation and their relationship with digestibility. Food Res Int 2023; 165:112453. [PMID: 36869472 DOI: 10.1016/j.foodres.2022.112453] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
This study investigated the effects of fermentation on in vitro protein digestibility of chickpeas and their relationship with the variations of multilevel structures of chickpea protein. The results showed that lactobacillus fermentation not only increased the solubility of chickpea protein but also enhanced the hydrolysis of protein during gastric and intestinal digestion by altering the multilevel structures of chickpea protein. The degree of hydrolysis, free amino acid content, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that macromolecule chickpea protein was hydrolyzed during fermentation. Raman and UV spectroscopy scans indicated that the α-helix content increased while the content of β-sheet in chickpea protein dropped significantly after fermentation. As for fermented chickpea protein, the aromatic acid residues were gradually more exposed than the unfermented chickpea protein, and the intramolecular disulfide bond was generally converted to the intermolecular form. Our findings showed that fermentation changed the multilevel structures of chickpea protein, degrading spherical structures into looser states that were more responsible for their effective hydrolysis during digestion. Furthermore, better digestibility of chickpea protein would stimulate the use of chickpea fermentation in food products.
Collapse
Affiliation(s)
- Yitong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yue Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Feng Sun
- Mondelēz Shanghai Food Corporate Management Co. Ltd., Suzhou, Jiangsu 215126, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore.
| | - Xuemei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Function Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
Xiang L, Zhu W, Jiang B, Chen J, Zhou L, Zhong F. Volatile compounds analysis and biodegradation strategy of beany flavor in pea protein. Food Chem 2023; 402:134275. [DOI: 10.1016/j.foodchem.2022.134275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
|
19
|
Filippone A, Ardizzone A, Bova V, Lanza M, Casili G, Cuzzocrea S, Esposito E, Campolo M, Paterniti I. A Combination of Xyloglucan, Pea Protein and Chia Seed Ameliorates Intestinal Barrier Integrity and Mucosa Functionality in a Rat Model of Constipation-Predominant Irritable Bowel Syndrome. J Clin Med 2022; 11:jcm11237073. [PMID: 36498647 PMCID: PMC9739531 DOI: 10.3390/jcm11237073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Irritable Bowel Syndrome is a gastrointestinal disorder that affects the large intestine, which encompasses several symptoms including, but not limited to, abdominal pain, bloating and dysmotility. In particular, IBS associated with constipation (IBS-C) is characterized by hard and dry stools and inadequate evacuation and difficulty in defecation. Although several drugs ameliorate intestinal modifications and constipation-associated features, management of IBS is still a challenge. Natural compounds including Xyloglucan and pea protein (XP) and Chia seed powder (CS) are widely known to possess beneficial effects in counteracting several gastrointestinal disorders. Here, we aimed to assess the combined effects of XP and CS to treat constipation-related alterations in an IBS-C rat model. IBS-C was induced by gastric instillation of 2 mL of cold water (0-4 °C) for 14 days and Xiloglucan, Pea protein and Chia seeds (XP + CS) treatment was orally administered for 7 days. On day 22, colon tissues were collected for histological analysis. Our results showed that XP + CS administration attenuated constipation-related parameters by increasing body weight and food and water intake. Upon XP + CS treatment, from day 14 to 22, stool moisture content was restored to physiological level. Colonic tissues from IBS-C rats depicted a disruption of the organ architecture accompanied by edema. Loss of colonic structure was reflected by the marked reduction of tight junction protein expression, Occludin and zona occludens-1 (ZO-1). Administration of XP + CS treatment in IBS-C rats significantly ameliorated the colonic histological parameters and exerted a positive effect on barrier integrity by restoring the expression of Occludin and zona occludens-1 (ZO-1). Our findings demonstrated that the efficacy of XP and CS in managing constipation in rats is due to the ability of these compounds to form a protective barrier fortifying intestinal integrity and gut functionality.
Collapse
|
20
|
Mefleh M, Faccia M, Natrella G, De Angelis D, Pasqualone A, Caponio F, Summo C. Development and Chemical-Sensory Characterization of Chickpeas-Based Beverages Fermented with Selected Starters. Foods 2022; 11:foods11223578. [PMID: 36429170 PMCID: PMC9689564 DOI: 10.3390/foods11223578] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Legume protein ingredients are receiving continuous interest for their potential to formulate plant-based dairy analogs. In this study, a legume-based slurry was produced from an Apulian black chickpeas (BCP) protein concentrate and fermented with three starter cultures, Streptococcus thermophilus (ST), a co-culture of ST with Lactococcus lactis (STLL) and a co-culture of ST with Lactobacillus plantarum (STLP). The effect of fermentation on the biochemical, texture and sensorial parameters was evaluated. The same beverage without inoculum was used as a control (CTRL). All the obtained fermented beverages were characterized by high protein (120.00 g kg−1) and low-fat contents (17.12 g kg−1). Fermentation contributed to a decrease in the contents of phytic acid by 10 to 79% and saturated fatty acids by 30 to 43%, with the STLP fermentation exercising the major effect. The three culture starters influenced the texture and sensorial attributes and the profile of the volatile compounds differently. Fermentation increased the lightness, consistency, cohesivity and viscosity of the formulated beverages. On a sensorial level, STLL had a major effect on the acidity, sourness and astringency, while both ST and STLP affected the creaminess, solubility and stickiness. Legumes and grass aromas were masked in LAB-fermented samples, probably due to a new VOC formation. The functional properties of LAB fermentation, along with the high protein content of the black chickpeas concentrate, provide the opportunity to formulate a clean label and safe plant-based fermented beverage with higher nutritional value compared to the others currently found in the market.
Collapse
|
21
|
Eze CR, Kwofie EM, Adewale P, Lam E, Ngadi M. Advances in legume protein extraction technologies: A review. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Ali SA, Saeed SMG, Ejaz U, Baloch MN, Sohail M. A novel approach to improve the nutritional value of black gram (Vigna mungo L.) by the combined effect of pre-gelatinization and fermentation by Lactobacillus sp. E14 and Saccharomyces cerevisiae MK-157: Impact on morphological, thermal, and chemical structural properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Abstract
Legume proteins have a promising future in the food industry due to their nutritional, environmental, and economic benefits. However, their application is still limited due to the presence of antinutritional and allergenic compounds, their poor technological properties, and their unpleasant sensory characteristics. Fermentation has been traditionally applied to counteract these inconveniences. At present, lactic acid fermentation of legumes is attracting the attention of researchers and industry in relation to the development of healthier, tasty, and technologically adapted products. Hence, we aimed to review the literature to shed light on the effect of lactic acid fermentation on legume protein composition and on their nutritional, functional, technological, and sensorial properties. The antimicrobial activity of lactic acid bacteria during legume fermentation was also considered. The heterogenicity of raw material composition (flour, concentrate, and isolate), the diversity of lactic acid bacteria (nutriment requirements, metabolic pathways, and enzyme production), and the numerous possible fermenting conditions (temperature, time, oxygen, and additional nutrients) offer an impressive range of possibilities with regard to fermented legume products. Systematic studies are required in order to determine the specific roles of the different factors. The optimal selection of these criteria will allow one to obtain high-quality fermented legume products. Fermentation is an attractive technology for the development of legume-based products that are able to satisfy consumers’ expectations from a nutritional, functional, technological, and sensory point of view.
Collapse
|
24
|
Harper AR, Dobson RCJ, Morris VK, Moggré GJ. Fermentation of plant-based dairy alternatives by lactic acid bacteria. Microb Biotechnol 2022; 15:1404-1421. [PMID: 35393728 PMCID: PMC9049613 DOI: 10.1111/1751-7915.14008] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
Ethical, environmental and health concerns around dairy products are driving a fast‐growing industry for plant‐based dairy alternatives, but undesirable flavours and textures in available products are limiting their uptake into the mainstream. The molecular processes initiated during fermentation by lactic acid bacteria in dairy products is well understood, such as proteolysis of caseins into peptides and amino acids, and the utilisation of carbohydrates to form lactic acid and exopolysaccharides. These processes are fundamental to developing the flavour and texture of fermented dairy products like cheese and yoghurt, yet how these processes work in plant‐based alternatives is poorly understood. With this knowledge, bespoke fermentative processes could be engineered for specific food qualities in plant‐based foods. This review will provide an overview of recent research that reveals how fermentation occurs in plant‐based milk, with a focus on how differences in plant proteins and carbohydrate structure affect how they undergo the fermentation process. The practical aspects of how this knowledge has been used to develop plant‐based cheeses and yoghurts is also discussed.
Collapse
Affiliation(s)
- Aimee R Harper
- Biomolecular Interaction Centre, Food Transitions 2050 Joint Postgraduate School, and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,The New Zealand Institute for Plant and Food Research Limited, 74 Gerald St, Lincoln, 7608, New Zealand.,The Riddet Institute, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, Food Transitions 2050 Joint Postgraduate School, and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,The Riddet Institute, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., 3010, Australia
| | - Vanessa K Morris
- Biomolecular Interaction Centre, Food Transitions 2050 Joint Postgraduate School, and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Gert-Jan Moggré
- The New Zealand Institute for Plant and Food Research Limited, 74 Gerald St, Lincoln, 7608, New Zealand
| |
Collapse
|
25
|
Dębińska A, Sozańska B. Fermented Food in Asthma and Respiratory Allergies—Chance or Failure? Nutrients 2022; 14:nu14071420. [PMID: 35406034 PMCID: PMC9002914 DOI: 10.3390/nu14071420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
In the last few decades, a dramatic increase in the global prevalence of allergic diseases and asthma was observed. It was hypothesized that diet may be an important immunomodulatory factor influencing susceptibility to allergic diseases. Fermented food, a natural source of living microorganisms and bioactive compounds, has been demonstrated to possess health-promoting potentials and seems to be a promising strategy to reduce the risk of various immune-related diseases, such as allergic diseases and asthma. The exact mechanisms by which allergic diseases and asthma can be alleviated or prevented by fermented food are not well understood; however, its potential to exert an effect through modulating the immune response and influencing the gut microbiota has been recently studied. In this review, we provide the current knowledge on the role of diet, including fermented foods, in preventing or treating allergic diseases and asthma.
Collapse
|
26
|
Bisly AA, Hettiarachchy NS, Kumar TKS, Lay JO. Antioxidant activities of solid‐state fermentation derived proteins and peptides from heat‐stabilized defatted rice bran. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ali A. Bisly
- Department of Food Science University of Arkansas Fayetteville Arkansas USA
- Faculty of Agriculture University of Kufa Kufa Iraq
| | | | - T. K. S. Kumar
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas USA
| | - Jackson O. Lay
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas USA
| |
Collapse
|
27
|
Fan L, Yang M, Ma S, Huang J. Isolation, purification, and characterization of the globulin from wheat germ. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ling Fan
- Food and Pharmacy College Xuchang University Xuchang Henan 461000 China
| | - Mingqian Yang
- College of Biological Engineer Henan University of Technology Zhengzhou Henan 450001 China
| | - Sen Ma
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Jihong Huang
- Food and Pharmacy College Xuchang University Xuchang Henan 461000 China
- College of Biological Engineer Henan University of Technology Zhengzhou Henan 450001 China
| |
Collapse
|
28
|
Trindler C, Annika Kopf-Bolanz K, Denkel C. Aroma of peas, its constituents and reduction strategies - Effects from breeding to processing. Food Chem 2021; 376:131892. [PMID: 34971885 DOI: 10.1016/j.foodchem.2021.131892] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/26/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022]
Abstract
Peas as an alternative protein source have attracted a great deal of interest from the food industry and consumers in recent years. However, pea proteins usually do not taste neutral and exhibit a distinct flavor, often characterized as "beany". This is usually contrasted by the food industry's desire for sensory neutral protein sources. In this review, we highlight the current state of knowledge about the aroma of peas and its changes along the pea value chain. Possible causes and origins, and approaches to reduce or eliminate the aroma constituents are presented. Fermentative methods were identified as interesting to mitigate undesirable off-flavors. Major potential has also been discussed for breeding, as there appears to be a considerable leverage at this point in the value chain: a reduction of plant-derived flavors, precursors, or substrates involved in off-flavor evolution could prevent the need for expensive removal later.
Collapse
|
29
|
Shi Y, Singh A, Kitts DD, Pratap-Singh A. Lactic acid fermentation: A novel approach to eliminate unpleasant aroma in pea protein isolates. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111927] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Bhattad T, Koradiya A, Prakash G. Prebiotic activity of paramylon isolated from heterotrophically grown Euglena gracilis. Heliyon 2021; 7:e07884. [PMID: 34584997 PMCID: PMC8450201 DOI: 10.1016/j.heliyon.2021.e07884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/02/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
Paramylon from Euglena gracilis is an insoluble crystalline β-1,3-glucan which have pharmaceutical and nutraceuticals applications. The present study aims to check the prebiotic potential of paramylon derived from heterotrophically grown E. gracilis in bioreactor. The Paramylon was extracted using sodium dodecyl sulfate from E. gracilis biomass. The Fourier Transform-Infra Red spectroscopy and scanning electron microscopy demonstrated the isolated paramylon to be equivalent to that of analytical standard. The prebiotic activity of E. gracilis cell extract and isolated paramylon was studied. E. gracilis cell extract as well as isolated paramylon led to cell number enhancement of Lacfid (Lactobacillus) strain exhibiting the prebiotic activities.
Collapse
Affiliation(s)
| | - Akshaykumar Koradiya
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | | |
Collapse
|
31
|
Sim SYJ, SRV A, Chiang JH, Henry CJ. Plant Proteins for Future Foods: A Roadmap. Foods 2021; 10:1967. [PMID: 34441744 PMCID: PMC8391319 DOI: 10.3390/foods10081967] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Protein calories consumed by people all over the world approximate 15-20% of their energy intake. This makes protein a major nutritional imperative. Today, we are facing an unprecedented challenge to produce and distribute adequate protein to feed over nine billion people by 2050, in an environmentally sustainable and affordable way. Plant-based proteins present a promising solution to our nutritional needs due to their long history of crop use and cultivation, lower cost of production, and easy access in many parts of the world. However, plant proteins have comparatively poor functionality, defined as poor solubility, foaming, emulsifying, and gelling properties, limiting their use in food products. Relative to animal proteins, including dairy products, plant protein technology is still in its infancy. To bridge this gap, advances in plant protein ingredient development and the knowledge to construct plant-based foods are sorely needed. This review focuses on some salient features in the science and technology of plant proteins, providing the current state of the art and highlighting new research directions. It focuses on how manipulating plant protein structures during protein extraction, fractionation, and modification can considerably enhance protein functionality. To create novel plant-based foods, important considerations such as protein-polysaccharide interactions, the inclusion of plant protein-generated flavors, and some novel techniques to structure plant proteins are discussed. Finally, the attention to nutrition as a compass to navigate the plant protein roadmap is also considered.
Collapse
Affiliation(s)
- Shaun Yong Jie Sim
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Akila SRV
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Jie Hong Chiang
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|