1
|
Molina-Vera C, Morales-Tlalpan V, Chavez-Vega A, Uribe-López J, Trujillo-Barrientos J, Campos-Guillén J, Chávez-Servín JL, García-Gasca T, Saldaña C. The Killer Saccharomyces cerevisiae Toxin: From Origin to Biomedical Research. Microorganisms 2024; 12:2481. [PMID: 39770684 PMCID: PMC11727844 DOI: 10.3390/microorganisms12122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 01/16/2025] Open
Abstract
The killer systems of S. cerevisiae are defined by the co-infection of two viral agents, an M virus and a helper virus. Each killer toxin is determined by the type of M virus (ScV-M1, ScV-M2, ScV-M28, and ScV-Mlus), which encodes a specific toxin (K1, K2, K28, and Klus). Since their discovery, interest in their potential use as antimicrobial agents has driven research into the mechanisms of action of these toxins on susceptible cells. This review provides an overview of the key aspects of killer toxins, including their origin and the evolutionary implications surrounding the viruses involved in the killer system, as well as their potential applications in the biomedical field and as a biological control strategy. Special attention is given to the mechanisms of action described to date for the various S. cerevisiae killer toxins.
Collapse
Affiliation(s)
- Carlos Molina-Vera
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
| | - Verónica Morales-Tlalpan
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
- National Laboratory for Advanced Scientific Visualization (LAVIS-FCN-UAQ), Querétaro 76230, Mexico
| | - Amairani Chavez-Vega
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
| | - Jennifer Uribe-López
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
| | - Jessica Trujillo-Barrientos
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
| | - Juan Campos-Guillén
- Faculty of Chemistry, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76320, Mexico; (J.C.-G.); (J.L.C.-S.)
| | - Jorge Luis Chávez-Servín
- Faculty of Chemistry, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76320, Mexico; (J.C.-G.); (J.L.C.-S.)
| | - Teresa García-Gasca
- Molecular Biology Laboratory, Facultad de Ciencias Naturales, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76230, Mexico;
| | - Carlos Saldaña
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
- National Laboratory for Advanced Scientific Visualization (LAVIS-FCN-UAQ), Querétaro 76230, Mexico
| |
Collapse
|
2
|
Comitini F, Canonico L, Agarbati A, Ciani M. Biocontrol and Probiotic Function of Non- Saccharomyces Yeasts: New Insights in Agri-Food Industry. Microorganisms 2023; 11:1450. [PMID: 37374952 DOI: 10.3390/microorganisms11061450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Fermented food matrices, including beverages, can be defined as the result of the activity of complex microbial ecosystems where different microorganisms interact according to different biotic and abiotic factors. Certainly, in industrial production, the technological processes aim to control the fermentation to place safe foods on the market. Therefore, if food safety is the essential prerogative, consumers are increasingly oriented towards a healthy and conscious diet driving the production and consequently the applied research towards natural processes. In this regard, the aim to guarantee the safety, quality and diversity of products should be reached limiting or avoiding the addition of antimicrobials or synthetic additives using the biological approach. In this paper, the recent re-evaluation of non-Saccharomyces yeasts (NSYs) has been reviewed in terms of bio-protectant and biocontrol activity with a particular focus on their antimicrobial power using different application modalities including biopackaging, probiotic features and promoting functional aspects. In this review, the authors underline the contribution of NSYs in the food production chain and their role in the technological and fermentative features for their practical and useful use as a biocontrol agent in food preparations.
Collapse
Affiliation(s)
- Francesca Comitini
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Laura Canonico
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alice Agarbati
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maurizio Ciani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
3
|
Servienė E, Serva S. Recent Advances in the Yeast Killer Systems Research. Microorganisms 2023; 11:1191. [PMID: 37317165 DOI: 10.3390/microorganisms11051191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 06/16/2023] Open
Abstract
Biocidic phenotype is common in yeast strains isolated from a variety of natural and industrial habitats [...].
Collapse
Affiliation(s)
- Elena Servienė
- Laboratory of Genetics, Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania
| | - Saulius Serva
- Laboratory of Nucleic Acid Biochemistry, Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Efremenko E, Aslanli A, Lyagin I. Advanced Situation with Recombinant Toxins: Diversity, Production and Application Purposes. Int J Mol Sci 2023; 24:ijms24054630. [PMID: 36902061 PMCID: PMC10003545 DOI: 10.3390/ijms24054630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Today, the production and use of various samples of recombinant protein/polypeptide toxins is known and is actively developing. This review presents state-of-the-art in research and development of such toxins and their mechanisms of action and useful properties that have allowed them to be implemented into practice to treat various medical conditions (including oncology and chronic inflammation applications) and diseases, as well as to identify novel compounds and to detoxify them by diverse approaches (including enzyme antidotes). Special attention is given to the problems and possibilities of the toxicity control of the obtained recombinant proteins. The recombinant prions are discussed in the frame of their possible detoxification by enzymes. The review discusses the feasibility of obtaining recombinant variants of toxins in the form of protein molecules modified with fluorescent proteins, affine sequences and genetic mutations, allowing us to investigate the mechanisms of toxins' bindings to their natural receptors.
Collapse
Affiliation(s)
- Elena Efremenko
- Correspondence: ; Tel.: +7-(495)-939-3170; Fax: +7-(495)-939-5417
| | | | | |
Collapse
|
5
|
Maske BL, De Carvalho Neto DP, da Silva GB, De Dea Lindner J, Soccol CR, de Melo Pereira GV. Yeast viruses and their implications in fermented foods and beverages. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Chang M, Fan S, Lu R, Tao F, Yang F, Han Q, Liu J, Yang P. Suppression of Sunscreen Leakage in Water by Amyloid-like Protein Aggregates. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42451-42460. [PMID: 34486369 DOI: 10.1021/acsami.1c11307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A sunscreen offers indispensable skin protection against UV damage and related skin diseases. However, due to the poor interfacial stability of sunscreen coatings on the skin, the synthetic ingredients in sunscreen creams easily fall off and enter aquatic environments, causing large ecological hazards and skin protection failure. Herein, we tackle this issue by introducing amyloid-like protein aggregates into a sunscreen to noticeably enhance the interfacial robustness of sunscreen coatings on the skin. The synthesis of such an agent to suppress sunscreen leakage can be achieved by manipulating the phase transition of bovine serum albumin (BSA) in a mild aqueous solution at room temperature. The resulting phase-transitioned BSA (PTB) aggregates effectively entrap the sunscreen ingredients to generate a uniform cream coating on the skin with robust amyloid-mediated interfacial adhesion stability. With continuous flushing in aquatic environments, such as salt water and seawater, this PTB-modified sunscreen (PTB sunscreen) coated on the skin maintains a retention ratio as high as >92%, which is 2-10 times higher than those of commercially available sunscreen products. The high retention ratio of the PTB sunscreen in aquatic environments demonstrates the great potential of amyloid-like protein aggregates in the development of leakage-free sunscreens with low ecosystem hazards and long-lasting UV protection in aquatic environments.
Collapse
Affiliation(s)
- Mengjie Chang
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Simeng Fan
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Runqiu Lu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Fei Tao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Facui Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qian Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jun Liu
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
7
|
Comitini F, Agarbati A, Canonico L, Ciani M. Yeast Interactions and Molecular Mechanisms in Wine Fermentation: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22147754. [PMID: 34299371 PMCID: PMC8307806 DOI: 10.3390/ijms22147754] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/16/2023] Open
Abstract
Wine can be defined as a complex microbial ecosystem, where different microorganisms interact in the function of different biotic and abiotic factors. During natural fermentation, the effect of unpredictable interactions between microorganisms and environmental factors leads to the establishment of a complex and stable microbiota that will define the kinetics of the process and the final product. Controlled multistarter fermentation represents a microbial approach to achieve the dual purpose of having a less risky process and a distinctive final product. Indeed, the interactions evolved between microbial consortium members strongly modulate the final sensorial properties of the wine. Therefore, in well-managed mixed fermentations, the knowledge of molecular mechanisms on the basis of yeast interactions, in a well-defined ecological niche, becomes fundamental to control the winemaking process, representing a tool to achieve such objectives. In the present work, the recent development on the molecular and metabolic interactions between non-Saccharomyces and Saccharomyces yeasts in wine fermentation was reviewed. A particular focus will be reserved on molecular studies regarding the role of nutrients, the production of the main byproducts and volatile compounds, ethanol reduction, and antagonistic actions for biological control in mixed fermentations.
Collapse
|