1
|
Le TA, Huynh TP. Hemicellulose-Based Sensors: When Sustainability Meets Complexity. ACS Sens 2024; 9:4975-5001. [PMID: 39344466 DOI: 10.1021/acssensors.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hemicelluloses (HCs) are promising sustainable biopolymers with a great natural abundance, excellent biocompatibility, and biodegradability. Yet, their potential sensing applications remain limited due to intrinsic challenges in their heterogeneous chemical composition, structure, and physicochemical properties. Herein, recent advances in the development of HC-based sensors for different chemical analytes and physical stimuli using different transduction mechanisms are reviewed and discussed. HCs can be utilized as carbonaceous precursors, reducing, capping, and stabilizing agents, binders, and active components for sensing applications. In addition, different strategies to develop and improve the sensing capacity of HC-based sensors are also highlighted.
Collapse
Affiliation(s)
- Trung-Anh Le
- Department of Chemistry, Faculty of Science, University of Helsinki, A.I. Virtasen aukio 1, 00560 Helsinki, Finland
| | - Tan-Phat Huynh
- Laboratory of Molecular Sciences and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
2
|
Ponnusamy A, Niluswan K, Prodpran T, Kim JT, Rhim JW, Benjakul S. Storage stability of Asian seabass oil-in-water Pickering emulsion packed in pouches made from electrospun and solvent casted bilayer films from poly lactic acid/chitosan-gelatin blend containing epigallocatechin gallate. Int J Biol Macromol 2024; 265:130760. [PMID: 38462097 DOI: 10.1016/j.ijbiomac.2024.130760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Bilayer pouches were fabricated with chitosan (CS)-fish gelatin (FG) mixture containing epigallocatechin gallate (EGCG) deposited over the poly lactic acid (PLA) film through solvent casting and electrospinning techniques. Pickering emulsions (PE) of Asian seabass depot fat oil stabilized by zein colloidal particles were packed in bilayer pouches and stored at 28 ± 2 °C. The PE packed in pouch containing EGCG had higher emulsion and oxidative stability after 30 days of storage as witnessed by the smaller droplet size and lower values of thiobarbituric acid reactive substances, peroxide, conjugated diene and volatile compounds in comparison with control (PE packed in monolayer PLA pouch) (P < 0.05). EGCG incorporated pouch retained more linoleic acid (C18:2 n-6) and linolenic acid (C18:3 n-9) in emulsion than PLA pouch. Therefore, pouch from bilayer PLA/CS-FG films comprising EGCG could serve as active packaging and extended the shelf life of Pickering emulsion.
Collapse
Affiliation(s)
- Arunachalasivamani Ponnusamy
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Krisana Niluswan
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Thummanoon Prodpran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence in Bio-based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
3
|
Zabidi N'A, Zainal NN, Tawakkal ISMA, Mohd Basri MS, Ariffin SH, Naim MN. Effect of thymol on properties of bionanocomposites from poly (lactic acid)/poly (butylene succinate)/nanofibrillated cellulose for food packaging application. Int J Biol Macromol 2023; 251:126212. [PMID: 37567533 DOI: 10.1016/j.ijbiomac.2023.126212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/18/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
The present study developed the formulation of active bionanocomposites films endowed with the abilities of high biodegradability and antimicrobials for active packaging applications. The aim of this work was to prepare poly (lactic acid)/poly (butylene succinate) (PLA/PBS) blended films reinforced with different concentrations of nanofibrillated cellulose (NFC) and 9 % of thymol essential oil (EO) using the casting method. The active films were further evaluated through Fourier transform infrared spectroscopy (FTIR); as well as mechanical, physical, water vapour permeability (WVP), thermal analysis (TGA), biodegradation, morphological, and antimicrobial (% reduction of bacteria) testing. The tensile strength (TS) of PLA/PBS blend films increased by 12 % with the incorporation of 2 wt% of NFC. The PLA/PBS/NFC with 9 % thymol EO has a good water barrier performance with its tensile strength, elongation at break, and tensile modulus was 13.2 MPa, 13.1 %, and 513 MPa respectively. The presence of NFC promoted the disintegration of PLA/PBS films by 70.5 %. These films promoted the antibacterial activity against S. aureus and E. coli. The study demonstrates that the developed films improved the qualities of chicken fillets and have great potential to be used as active bionanocomposites in food packaging applications.
Collapse
Affiliation(s)
- Nurul 'Afifah Zabidi
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Najiha Zainal
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Intan Syafinaz Mohamed Amin Tawakkal
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Salahuddin Mohd Basri
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Siti Hajar Ariffin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Nazli Naim
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Dilek NM, Babaoğlu AS, Unal K, Ozbek C, Pırlak L, Karakaya M. Marination with aronia, grape and hawthorn vinegars affects the technological, textural, microstructural and sensory properties of spent chicken meat. Br Poult Sci 2023:1-7. [PMID: 36607340 DOI: 10.1080/00071668.2022.2163616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. The purpose of the present research was to detect the efficacies of various vinegars (aronia, grape and hawthorn) used as marination solutions on the physicochemical, technological, textural and sensory properties of spent chicken meat. The pH, colour parameters, cooking loss, marinade absorption, yield, texture (TPA and MORS), characteristics via scanning electron microscopy (SEM) and sensory properties of marinated spent chicken samples were determined.2. Marination solutions used in the treatment groups were prepared with aronia, grape and hawthorn vinegars. The samples were agitated by hand to provide even dispersion of the solid ingredients in the marinades and were kept at 4°C for 24 h.3. The pH values of the samples were between 4.70 and 6.04. Marination with various marination solutions caused significant differences in terms of the a* and b* values of samples (P < 0.05). While marination with aronia vinegar decreased the b value of the samples, the use of grape and hawthorn vinegars in the marination solutions increased this value.4. Hardness and chewiness were the lowest in samples marinated with grape vinegar (P < 0.05) and were 135.14 and 48.79 N, respectively. As a result of marination with various vinegars, there was a significant (P < 0.05) decrease in the MORSF and MORSE values.5. Marinade absorption values decreased by marination with various vinegars. The highest yield values were found in the samples marinated with hawthorn vinegar (P < 0.05). The SEM indicated that marination with aronia, grape and hawthorn vinegar caused larger gaps between muscle fibres compared to the control samples.6. Samples marinated with vinegars had higher texture scores compared with the control. Consequently, the marination with vinegars such as aronia, grape and hawthorn has the potential to improve the technical and textural properties of spent chicken meat.
Collapse
Affiliation(s)
- N M Dilek
- Department of Nutrition and Dietetics, Akşehir Kadir Yallagöz School of Health, Selçuk University, Konya, Turkey
| | - A S Babaoğlu
- Department of Food Engineering, Agriculture Faculty, Selçuk University, Konya, Turkey
| | - K Unal
- Department of Food Engineering, Agriculture Faculty, Selçuk University, Konya, Turkey
| | - C Ozbek
- Department of Plant and Animal Production, Sarayonu Vocational School, Selçuk University, Konya, Turkey
| | - L Pırlak
- Department of Horticulture, Agriculture Faculty, Selçuk University, Konya, Turkey
| | - M Karakaya
- Department of Food Engineering, Agriculture Faculty, Selçuk University, Konya, Turkey
| |
Collapse
|
5
|
Gulin-Sarfraz T, Grøvlen MS, Rosqvist E, Pettersen MK, Peltonen J, Sarfraz J. Optimized multilayer coatings using layer-by-layer assembly method for excellent oxygen barrier of poly(lactic acid) based film. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
6
|
A Bioactive Chitosan-Based Film Enriched with Benzyl Isothiocyanate/α-Cyclodextrin Inclusion Complex and Its Application for Beef Preservation. Foods 2022; 11:foods11172687. [PMID: 36076872 PMCID: PMC9455720 DOI: 10.3390/foods11172687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
A bioactive packaging material based on chitosan (CS) incorporated with benzyl isothiocyanate (BITC) and α−cyclodextrin (α−CD) was fabricated to evaluate its preservative effects on fresh beef stored at 4 °C for 12 d according to the quality analysis. The Fourier-transform infrared (FTIR) spectrum revealed that the major structural moiety of BITC was embedded in the cavity of α−CD, except for the thiocyanate group. FTIR and X-ray diffraction analysis further verified that intermolecular interactions were formed between the BITC−α−CD and CS film matrix. The addition of BITC−α−CD decreased the UV light transmittance of pure CS film to lower than 63% but still had enough transparency for observing packaged items. The CS−based composite film displayed a sustainable antibacterial capacity and an enhanced antioxidant activity. Moreover, the total viable counts, total volatile base nitrogen, pH, thiobarbituric acid–reactive substances, and sensory evaluation of the raw beef treated with the CS−based composite film were 6.31 log colony-forming unit (CFU)/g, 19.60 mg/100 g, 6.84, 0.26 mg/kg, and 6.5 at 12 days, respectively, indicating the favorable protective efficacy on beef. These results suggested that the fabricated CS−based composite film has the application potential to be developed as a bioactive food packaging material, especially for beef preservation.
Collapse
|
7
|
Effect of Gaseous Citral on Table Grapes Contaminated by Rhizopus oryzae ITEM 18876. Foods 2022; 11:foods11162478. [PMID: 36010478 PMCID: PMC9407198 DOI: 10.3390/foods11162478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Rhizopus oryzae is responsible for rapidly producing a deliquescent appearance in grape berries, generally favoured by cold chain interruptions. To counteract fruit spoilage and to meet consumer acceptance, innovative strategies based on the application of natural compounds are ongoing. Due to their biological activities, including antimicrobial ones, natural flavour compounds extend the shelf life and improve the nutritional value as well as the organoleptic properties of foods. Thus, in this work, the application of the antimicrobial citral, a flavor component of monoterpenes identified in plant and fruit essential oils, was developed and validated against one spoiler of R. oryzae. Citral, as pure compound, was first investigated in vitro against R. oryzae ITEM 18876; then, concentrations equal to the minimal inhibitory concentration (MIC) and 4-fold MIC (4MIC) value were applied on the table grape cv Italia infected with this strain and stored. The MIC value was equal to 0.0125 μL/cm3; both citral concentrations (0.0125 and 0.05 µL/cm3) were effective in counteracting the microbial decay of infected table grapes over the storage period. The HS-SPME/GC-MS method showed citral persistence in the head space of plastic trays with the infected samples; as expected, a higher content of citral isomers was found in the sample treated with 4MIC value. In conclusion, citral revealed its efficacy to counteract the onset of soft rot by R. oryzae ITEM 18876 under storage conditions. Thus, it could be successfully exploited to develop an active packaging or natural preservatives to extend table grape shelf life without affecting its quality and sensory characteristics, whilst also satisfying the consumer demand for natural preservative agents.
Collapse
|
8
|
Controlled Release of Volatile Antimicrobial Compounds from Mesoporous Silica Nanocarriers for Active Food Packaging Applications. Int J Mol Sci 2022; 23:ijms23137032. [PMID: 35806038 PMCID: PMC9266657 DOI: 10.3390/ijms23137032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Essential oils and their active components have been extensively reported in the literature for their efficient antimicrobial, antioxidant and antifungal properties. However, the sensitivity of these volatile compounds towards heat, oxygen and light limits their usage in real food packaging applications. The encapsulation of these compounds into inorganic nanocarriers, such as nanoclays, has been shown to prolong the release and protect the compounds from harsh processing conditions. Nevertheless, these systems have limited shelf stability, and the release is of limited control. Thus, this study presents a mesoporous silica nanocarrier with a high surface area and well-ordered protective pore structure for loading large amounts of natural active compounds (up to 500 mg/g). The presented loaded nanocarriers are shelf-stable with a very slow initial release which levels out at 50% retention of the encapsulated compounds after 2 months. By the addition of simulated drip-loss from chicken, the release of the compounds is activated and gives an antimicrobial effect, which is demonstrated on the foodborne spoilage bacteria Brochothrixthermosphacta and the potentially pathogenic bacteria Escherichia coli. When the release of the active compounds is activated, a ≥4-log reduction in the growth of B. thermosphacta and a 2-log reduction of E. coli is obtained, after only one hour of incubation. During the same one-hour incubation period the dry nanocarriers gave a negligible inhibitory effect. By using the proposed nanocarrier system, which is activated by the food product itself, increased availability of the natural antimicrobial compounds is expected, with a subsequent controlled antimicrobial effect.
Collapse
|
9
|
Abstract
Packaging is an integral part of the food industry associated with food quality and safety including food shelf life, and communications from the marketing perspective. Traditional food packaging provides the protection of food from damage and storage of food products until being consumed. Packaging also presents branding and nutritional information and promotes marketing. Over the past decades, plastic films were employed as a barrier to keep food stuffs safe from heat, moisture, microorganisms, dust, and dirt particles. Recent advancements have incorporated additional functionalities in barrier films to enhance the shelf life of food, such as active packaging and intelligent packaging. In addition, consumer perception has influences on packaging materials and designs. The current trend of consumers pursuing environmental-friendly packaging is increased. With the progress of applied technologies in the food sector, sustainable packaging has been emerging in response to consumer preferences and environmental obligations. This paper reviews the importance of food packaging in relation to food quality and safety; the development and applications of advanced smart, active, and intelligent packaging systems, and the properties of an oxygen barrier. The advantages and disadvantages of these packaging are discussed. Consumer perceptions regarding environmental-friendly packaging that could be applied in the food industry are also discussed.
Collapse
|
10
|
Cold plasmas combined with Ar-based MAP for meatball products: Influence on microbiological shelflife and quality attributes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Heir E, Solberg LE, Jensen MR, Skaret J, Grøvlen MS, Holck AL. Improved microbial and sensory quality of chicken meat by treatment with lactic acid, organic acid salts and modified atmosphere packaging. Int J Food Microbiol 2022; 362:109498. [PMID: 34896912 DOI: 10.1016/j.ijfoodmicro.2021.109498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022]
Abstract
Microbial contamination and growth play important roles in spoilage and quality loss of raw poultry products. We evaluated the suitability of three commercially available organic acid based antimicrobial compounds, Purac FCC80 (l-lactic acid), Verdad N6 (buffered vinegar fermentate) and Provian K (blend of potassium acetate and diacetate) to prevent growth of the innate microbiota, reduce spoilage and enhance the sensory quality of raw chicken under vacuum, high CO2 (60/40% CO2/N2), and high O2 (75/25% O2/CO2) modified atmosphere (MA) storage conditions. Solutions were applied warm (50 °C) or cold (4 °C) to reflect treatments prior to (Prechill) or after (Postchill) cooling of chicken carcasses, respectively. Single postchill treatments of raw chicken wings with 5% Verdad N6 or Provian K solutions and MA storage enabled complete growth inhibition during the first seven days of storage before growth resumed. Enhanced bacterial control was obtained by combining Prechill lactic acid and Postchill Verdad N6 or Provian K treatments which indicated initial reductions up to 1.1 log and where total bacterial increase after 20 days storage was limited to 1.8-2.1 log. Antibacterial effects were dependent on the concentration of the inhibiting salts used, pH and the storage conditions. Bacterial community analyses showed increased relative levels of Gram-positive bacteria and with reductions of potential spoilage organisms in samples treated with the organic acid salts Verdad N6 and Provian K. Sensory analyses of raw, treated wings showed prominent lower scores in several spoilage associated odour attributes when compared with untreated chicken wings after 13 days storage. For heat-treated chicken, only minor differences for 22 tested attributes were detected between seven antimicrobial treatments and untreated control chicken. Immersion in commercially available organic acid/salt solutions combined with MA storage can reduce bacterial levels, improve microbial and sensory quality, and potentially improve shelf life and reduce food waste of chicken products.
Collapse
Affiliation(s)
- Even Heir
- Nofima AS - Norwegian Institute of Food, Fisheries and Aquaculture Research, P. O. Box 210, N-1431 Ås, Norway.
| | - Lars Erik Solberg
- Nofima AS - Norwegian Institute of Food, Fisheries and Aquaculture Research, P. O. Box 210, N-1431 Ås, Norway
| | - Merete Rusås Jensen
- Nofima AS - Norwegian Institute of Food, Fisheries and Aquaculture Research, P. O. Box 210, N-1431 Ås, Norway
| | - Josefine Skaret
- Nofima AS - Norwegian Institute of Food, Fisheries and Aquaculture Research, P. O. Box 210, N-1431 Ås, Norway
| | - Magnhild Seim Grøvlen
- Nofima AS - Norwegian Institute of Food, Fisheries and Aquaculture Research, P. O. Box 210, N-1431 Ås, Norway
| | - Askild Lorentz Holck
- Nofima AS - Norwegian Institute of Food, Fisheries and Aquaculture Research, P. O. Box 210, N-1431 Ås, Norway
| |
Collapse
|