1
|
Zahir A, Ge Z, Khan IA. Public health risks associated with food process contaminants - a review. J Food Prot 2024:100426. [PMID: 39643160 DOI: 10.1016/j.jfp.2024.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The increasing complexity of food production and processing has raised concerns regarding food process contaminants, which pose significant public health risks. Food process contaminants can be introduced during diverse phases of food processing such as drying, heating, grilling, and fermentation, resulting in the synthesis of harmful chemicals including acrylamide (AA), advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), furan and its naturally occurring derivatives, polycyclic aromatic hydrocarbons (PAHs), N-nitroso compounds (NOCs), 2-chloropropane-1,2-diol esters (2-MCPDE), and 3-chloropropane-1,2-diol esters (3-MCPDE), ethyl carbamate (EC), glycidyl esters (GE), and 4-methylimidazole (4-MEI), all of these are harmful to human health. Although these compounds can be somewhat prevented during processing, eliminating them can often be challenging due to their unknown formation mechanism. Moreover, prolonged exposure to these dangerous compounds might harm human health. There is limited understanding of the sources, formation processes, and hazards of food processing contaminants, and a lack of knowledge of the mechanisms involved in how to control their generation. In this review, we provide a comprehensive overview of the harmful effects associated with food process contaminants generated during thermal processing and fermentation, alongside elemental process contaminants and their potential threats to human health. Furthermore, this study identifies existing knowledge gaps proposes avenues for future inquiry, and emphasizes the necessity of employing a multi-disciplinary approach to alleviate the public health risks posed by food process contaminants, advocating for cooperative initiatives among food scientists, public health officials, and regulatory entities to enhance food safety and protect consumer health.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Faculty of Veterinary Sciences, Department of Food Science and Technology, Afghanistan National Agricultural Sciences & Technology University, Kandahar 3801, Afghanistan.
| | - Zhiwen Ge
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Cavalcanti MB, Silva IDCGD, Lamarca F, de Castro IRR. Research on commercial milk formulas for young children: A scoping review. MATERNAL & CHILD NUTRITION 2024; 20:e13675. [PMID: 38956436 PMCID: PMC11574680 DOI: 10.1111/mcn.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
A scoping review of publications about commercial milk formulas intended for or consumed by children 12-36 months (CMF 12-36) was conducted. This review aimed to comprehensively map the existing literature, identify key concepts in the field and understand its evolution through time. A total of 3329 articles were screened and 220 were included, published between 1986 and 2024. Most works were published after 2016 (70.0%) and in high-income countries (71.8%). Original studies were the vast majority (81.8%) of publications. Most publications dealt with feeding practices or analysed the composition and/or contamination of specific products (44.1% and 35.9%), but since the late 2000s, publications about marketing, policy, legislation, and consumer perception started to appear. Most published works (65.5%) did not focus exclusively on CMF 12-36 and included formulas for other demographics or other foods. About half of the works (55.5%) did not consider CMF 12-36 to be a breast milk substitute. We found 81 distinct product denominations used to refer to CMF 12-36, Growing Up Milk was the most common (25.9%). CMF industry was involved in 41.8% of all analysed works, and industry participation and funding were not always clearly informed (22.5% lacked a conflict of interest statement, and 25.5% did not present any information about funding). In the last decade, publications about CMF 12-36 have increased in volume and diversified in scope and subject matter. CMF-industry participation has always been and still is present in the field, so possible vested interests should be taken into account when appreciating the literature.
Collapse
Affiliation(s)
| | | | - Fernando Lamarca
- Department of Applied Nutrition, Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
3
|
Zahir A, Khan IA, Nasim M, Azizi MN, Azi F. Food process contaminants: formation, occurrence, risk assessment and mitigation strategies - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1242-1274. [PMID: 39038046 DOI: 10.1080/19440049.2024.2381210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Thermal treatment of food can lead to the formation of potentially harmful chemicals, known as process contaminants. These are adventitious contaminants that are formed in food during processing and preparation. Various food processing techniques, such as heating, drying, grilling, and fermentation, can generate hazardous chemicals such as acrylamide (AA), advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), furan, polycyclic aromatic hydrocarbons (PAHs), N-nitroso compounds (NOCs), monochloropropane diols (MCPD) and their esters (MCPDE) which can be detrimental to human health. Despite efforts to prevent the formation of these compounds during processing, eliminating them is often challenging due to their unknown formation mechanisms. It is critical to identify the potential harm to human health in processed food and understand the mechanisms by which harmful compounds form during processing, as prolonged exposure to these toxic compounds can lead to health problems. Various mitigation strategies, such as the use of diverse pre- and post-processing treatments, product reformulation, additives, variable process conditions, and novel integrated processing techniques, have been proposed to control these food hazards. In this review, we summarize the formation and occurrence, the potential for harm to human health produced by process contaminants in food, and potential mitigation strategies to minimize their impact.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Faculty of Veterinary Sciences, Department of Food Science and Technology, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Maazullah Nasim
- Faculty of Agriculture, Department of Horticulture, Kabul University, Kabul, Afghanistan
| | - Mohammad Naeem Azizi
- Faculty of Veterinary Sciences, Department of Pre-Clinic, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| |
Collapse
|
4
|
Aoudeh E, Oz E, Oz F. Understanding the heterocyclic aromatic amines: An overview and recent findings. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:1-66. [PMID: 38906585 DOI: 10.1016/bs.afnr.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Heterocyclic aromatic amines (HAAs) constitute a group of highly toxic organic compounds strongly associated with the onset of various types of cancer. This paper aims to serve as a valuable resource for food scientists working towards a better understanding of these compounds including formation, minimizing strategies, analysis, and toxicity as well as addressing existing gaps in the literature. Despite extensive research conducted on these compounds since their discovery, several aspects remain inadequately understood, necessitating further investigation. These include their formation pathways, toxic mechanisms, effective mitigation strategies, and specific health effects on humans. Nonetheless, recent research has yielded promising results, contributing significantly to our understanding of HAAs by proposing new potential formation pathways and innovative strategies for their reduction.
Collapse
Affiliation(s)
- Eyad Aoudeh
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Türkiye
| | - Emel Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Türkiye
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Türkiye.
| |
Collapse
|
5
|
Jitpakdee J, Kantachote D, Kanzaki H, Nitoda T. Potential of lactic acid bacteria to produce functional fermented whey beverage with putative health promoting attributes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Li Y, Jia X, Wang Z, He Z, Zeng M, Chen J. Characterizing changes in Maillard reaction indicators in whole milk powder and reconstituted low-temperature pasteurized milk under different preheating conditions. J Food Sci 2021; 87:193-205. [PMID: 34919274 DOI: 10.1111/1750-3841.15989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/27/2022]
Abstract
The chemical properties and quality of milk powder and reconstituted milk can be changed by preheating treatment during milk powder processing. The effect of preheating conditions (low-temperature pasteurization [LT], high-temperature pasteurization [HT], extended shelf-life [ESL], ultra-high-temperature [UHT], and in-container sterilization [CS]), on furosine, furfural compounds, and advanced glycation end products were investigated in milk powders and reconstituted milk. The results revealed that Maillard reaction indicators were affected by preheating intensity; contents of furosine, 5-hydroxymethylfurfural (HMF), 2-furfural, Nε-(carboxymethyl)lysine (CML), and Nε-(carboxyethyl)lysine (CEL) increased, whereas lysine and 5-methyl-furfural (MF) decreased in both milk powder and reconstituted milk with an increase in the intensity of preheating. CML and CEL contents in reconstituted milk increased by 1.7- to 2.4-fold and 1.3- to 1.6-fold, respectibely. The content of CML and CEL in high-preheating powders was 11%-34% and 18%-123% higher than that in LT samples, respectively. Compared with milk powder, furosine was reduced by 22%-55% and MF by 57%-69% in reconstituted milk; HMF increased by 12%-52%, CML and CEL increased 1.7-2.4 times and 1.3-1.6 times, respectively. A superposition effect was observed between preheating intensity and heat process times, which increased the content of Maillard reaction products. PRACTICAL APPLICATION: Our findings revealed the promotion effect of higher preheating conditions on Maillard reaction indicators in milk powder and reconstituted low-temperature pasteurized milk. The results will help reduce some of the harmful Maillard reaction indicators (e.g., advanced glycation end products) formed during heat processing and assist customers in selecting dairy products with low amounts of Maillard reaction products.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiaodi Jia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Kang HJ, Lee SY, Lee DY, Kang JH, Kim JH, Kim HW, Oh DH, Jeong JW, Hur SJ. Main mechanisms for carcinogenic heterocyclic amine reduction in cooked meat by natural materials. Meat Sci 2021; 183:108663. [PMID: 34481233 DOI: 10.1016/j.meatsci.2021.108663] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Carcinogens such as heterocyclic amine (HCA), produced during meat cooking, pose a risk of digestive and reproductive cancers in humans. Nevertheless, the exact mechanisms for HCA formation in meat and the control of HCA formation are not known. In this review, we provide an overview of the main cause of HCA formation in cooked meat, fundamental data on natural materials to inhibit HCA carcinogenicity, and methods to analyze HCA in cooked meat. Related past studies has shown that natural substances contain various components that act as antioxidants, and these antioxidants can prevent HCA and mutagenic factors. Free radicals and DNA adducts produced by HCA metabolism have carcinogenic properties. Antioxidants have been found to inhibit oxidative stress caused by free radicals and DNA adducts. Therefore, we can be hypothesized that various natural materials can inhibit HCA carcinogens and mutagens.
Collapse
Affiliation(s)
- Hea Jin Kang
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea
| | - Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea
| | - Ji Hyeop Kang
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea
| | - Jae Hyeon Kim
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea
| | - Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea
| | - Dong Hoon Oh
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea
| | - Jae Won Jeong
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi 17546, South Korea.
| |
Collapse
|