1
|
Tiwari R, Sethi P, Rudrangi SRS, Padarthi PK, Kumar V, Rudrangi S, Vaghela K. Inulin: a multifaceted ingredient in pharmaceutical sciences. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2570-2595. [PMID: 39074033 DOI: 10.1080/09205063.2024.2384276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Inulin, a naturally occurring polysaccharide derived from plants such as chicory root, has emerged as a significant ingredient in pharmaceutical sciences due to its diverse therapeutic and functional properties. This review explores the multifaceted applications of inulin, focusing on its chemical structure, sources, and mechanisms of action. Inulin's role as a prebiotic is highlighted, with particular emphasis on its ability to modulate gut microbiota, enhance gut health, and improve metabolic processes. The review also delves into the therapeutic applications of inulin, including its potential in managing metabolic health issues such as diabetes and lipid metabolism, as well as its immune-modulating properties and benefits in gastrointestinal health. Furthermore, the article examines the incorporation of inulin in drug formulation and delivery systems, discussing its use as a stabilizing agent and its impact on enhancing drug bioavailability. Innovative inulin-based delivery systems, such as nanoparticles and hydrogels, are explored for their potential in controlled release formulations. The efficacy of inulin is supported by a review of clinical studies, underscoring its benefits in managing conditions like diabetes, cardiovascular health, and gastrointestinal disorders. Safety profiles, regulatory aspects, and potential side effects are also addressed. This comprehensive review concludes with insights into future research directions and the challenges associated with the application of inulin in pharmaceutical sciences.
Collapse
Affiliation(s)
- Ruchi Tiwari
- Psit-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, Uttar Pradesh, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, India
| | | | | | - Vinod Kumar
- G D Goenka University, Gurugram, Sohna, Haryana, India
| | | | - Krishna Vaghela
- Department of Pharmacy, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, India
| |
Collapse
|
2
|
Bani Saeid A, De Rubis G, Williams KA, Yeung S, Chellappan DK, Singh SK, Gupta G, Hansbro PM, Shahbazi MA, Gulati M, Kaur IP, Santos HA, Paudel KR, Dua K. Revolutionizing lung health: Exploring the latest breakthroughs and future prospects of synbiotic nanostructures in lung diseases. Chem Biol Interact 2024; 395:111009. [PMID: 38641145 DOI: 10.1016/j.cbi.2024.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
The escalating prevalence of lung diseases underscores the need for innovative therapies. Dysbiosis in human body microbiome has emerged as a significant factor in these diseases, indicating a potential role for synbiotics in restoring microbial equilibrium. However, effective delivery of synbiotics to the target site remains challenging. Here, we aim to explore suitable nanoparticles for encapsulating synbiotics tailored for applications in lung diseases. Nanoencapsulation has emerged as a prominent strategy to address the delivery challenges of synbiotics in this context. Through a comprehensive review, we assess the potential of nanoparticles in facilitating synbiotic delivery and their structural adaptability for this purpose. Our review reveals that nanoparticles such as nanocellulose, starch, and chitosan exhibit high potential for synbiotic encapsulation. These offer flexibility in structure design and synthesis, making them promising candidates for addressing delivery challenges in lung diseases. Furthermore, our analysis highlights that synbiotics, when compared to probiotics alone, demonstrate superior anti-inflammatory, antioxidant, antibacterial and anticancer activities. This review underscores the promising role of nanoparticle-encapsulated synbiotics as a targeted and effective therapeutic approach for lung diseases, contributing valuable insights into the potential of nanomedicine in revolutionizing treatment strategies for respiratory conditions, ultimately paving the way for future advancements in this field.
Collapse
Affiliation(s)
- Ayeh Bani Saeid
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands
| | - Monica Gulati
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh, India
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, AV, 9713, Groningen, the Netherlands; Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
3
|
Abedi A, Tafvizi F, Akbari N, Jafari P. Cytotoxic activity and apoptosis induction by supernatant of Lentilactobacillus buchneri on HT-29 colon cancer cells. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:219-226. [PMID: 38854985 PMCID: PMC11162173 DOI: 10.18502/ijm.v16i2.15355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background and Objectives Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer and the third most deadly cancer in the world. According to recent experimental reports, probiotics and their derivatives protect CRC patients from treatment-related side effects. Therefore, the present study aimed to investigate the cytotoxic impact of the cell-free supernatant (CFS) of Lentilactobacillus buchneri on the HT-29 cancer cell line. Materials and Methods In the current study, we used the L. buchneri CFS, which was well isolated and identified in our previous investigation from traditional yogurt in the Arak region of Iran. The apoptosis induction in HT-29 cancer cells was assessed by cell cytotoxicity, flow cytometry, and qRT-PCR. Results L. buchneri CFS inhibited the proliferation of HT-29 cancer cells in a time- and dose-dependent manner. The apoptotic effect of CFS was further supported by the flow cytometry data, which showed that the maximum incidence of apoptosis was observed in HT-29 cancer cells treated with the IC50 concentration of CFS after 72 hours. CFS of L. buchneri also exerted the up-regulating effect on the expression of pro-apoptotic genes including BAX, CASP9, and CASP3. L. buchneri CFS at an IC50 dose induced cell cycle arrest in the G0/G1 phase in HT-29 cells. Conclusion This study indicates that L. buchneri CFS can prevent colorectal cancer (CRC) development in patients by inducing cancer cell apoptosis. This finding suggests that the CFS of L. buchneri could be used as a therapeutic agent for the control of CRC.
Collapse
Affiliation(s)
- Adel Abedi
- Department of Microbiology, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Neda Akbari
- Department of Microbiology, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| | - Parvaneh Jafari
- Department of Microbiology, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
4
|
Xie W, Zhong YS, Li XJ, Kang YK, Peng QY, Ying HZ. Postbiotics in colorectal cancer: intervention mechanisms and perspectives. Front Microbiol 2024; 15:1360225. [PMID: 38450163 PMCID: PMC10914944 DOI: 10.3389/fmicb.2024.1360225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignancy affecting the gastrointestinal tract worldwide. The etiology and progression of CRC are related to factors such as environmental influences, dietary structure, and genetic susceptibility. Intestinal microbiota can influence the integrity of the intestinal mucosal barrier and modulate intestinal immunity by secreting various metabolites. Dysbiosis of the intestinal microbiota can affect the metabolites of the microbial, leading to the accumulation of toxic metabolites, which can trigger chronic inflammation or DNA damage and ultimately lead to cellular carcinogenesis and the development of CRC. Postbiotics are preparations of inanimate microorganisms or their components that are beneficial to the health of the host, with the main components including bacterial components (e.g., exopolysaccharides, teichoic acids, surface layer protein) and metabolites (e.g., short-chain fatty acids, tryptophan metabolite, bile acids, vitamins and enzymes). Compared with traditional probiotics, it has a more stable chemical structure and higher safety. In recent years, it has been demonstrated that postbiotics are involved in regulating intestinal microecology and improving the progression of CRC, which provides new ideas for the prevention and diagnosis of CRC. In this article, we review the changes in intestinal microbiota in different states of the gut and the mechanisms of anti-tumor activity of postbiotic-related components, and discuss the potential significance of postbiotics in the diagnosis and treatment of CRC. This reviews the changes and pathogenesis of intestinal microbiota in the development of CRC, and summarizes the relevant mechanisms of postbiotics in resisting the development of CRC in recent years, as well as the advantages and limitations of postbiotics in the treatment process of CRC.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
5
|
Luqman A, He M, Hassan A, Ullah M, Zhang L, Rashid Khan M, Din AU, Ullah K, Wang W, Wang G. Mood and microbes: a comprehensive review of intestinal microbiota's impact on depression. Front Psychiatry 2024; 15:1295766. [PMID: 38404464 PMCID: PMC10884216 DOI: 10.3389/fpsyt.2024.1295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Depression is considered a multifaceted and intricate mental disorder of growing concern due to its significant impact on global health issues. The human gut microbiota, also known as the "second brain," has an important role in the CNS by regulating it through chemical, immunological, hormonal, and neurological processes. Various studies have found a significant bidirectional link between the brain and the gut, emphasizing the onset of depression therapies. The biological and molecular processes underlying depression and microbiota are required, as the bidirectional association may represent a novel study. However, profound insights into the stratification and diversity of the gut microbiota are still uncommon. This article investigates the emerging evidence of a bacterial relationship between the gut and the brain's neurological system and its potential pathogenicity and relevance. The interplay of microbiota, immune system, nervous system neurotransmitter synthesis, and neuroplasticity transitions is also widely studied. The consequences of stress, dietary fibers, probiotics, prebiotics, and antibiotics on the GB axis are being studied. Multiple studies revealed the processes underlying this axis and led to the development of effective microbiota-based drugs for both prevention and treatment. Therefore, the results support the hypothesis that gut microbiota influences depression and provide a promising area of research for an improved knowledge of the etiology of the disease and future therapies.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | | | - Muhammad Rashid Khan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Pakistan
| | - Wei Wang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
6
|
Lagoumintzis G, Patrinos GP. Triangulating nutrigenomics, metabolomics and microbiomics toward personalized nutrition and healthy living. Hum Genomics 2023; 17:109. [PMID: 38062537 PMCID: PMC10704648 DOI: 10.1186/s40246-023-00561-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The unique physiological and genetic characteristics of individuals influence their reactions to different dietary constituents and nutrients. This notion is the foundation of personalized nutrition. The field of nutrigenetics has witnessed significant progress in understanding the impact of genetic variants on macronutrient and micronutrient levels and the individual's responsiveness to dietary intake. These variants hold significant value in facilitating the development of personalized nutritional interventions, thereby enabling the effective translation from conventional dietary guidelines to genome-guided nutrition. Nevertheless, certain obstacles could impede the extensive implementation of individualized nutrition, which is still in its infancy, such as the polygenic nature of nutrition-related pathologies. Consequently, many disorders are susceptible to the collective influence of multiple genes and environmental interplay, wherein each gene exerts a moderate to modest effect. Furthermore, it is widely accepted that diseases emerge because of the intricate interplay between genetic predisposition and external environmental influences. In the context of this specific paradigm, the utilization of advanced "omic" technologies, including epigenomics, transcriptomics, proteomics, metabolomics, and microbiome analysis, in conjunction with comprehensive phenotyping, has the potential to unveil hitherto undisclosed hereditary elements and interactions between genes and the environment. This review aims to provide up-to-date information regarding the fundamentals of personalized nutrition, specifically emphasizing the complex triangulation interplay among microbiota, dietary metabolites, and genes. Furthermore, it highlights the intestinal microbiota's unique makeup, its influence on nutrigenomics, and the tailoring of dietary suggestions. Finally, this article provides an overview of genotyping versus microbiomics, focusing on investigating the potential applications of this knowledge in the context of tailored dietary plans that aim to improve human well-being and overall health.
Collapse
Affiliation(s)
- George Lagoumintzis
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
| | - George P Patrinos
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
| |
Collapse
|
7
|
Leong MY, Kong YL, Harun MY, Looi CY, Wong WF. Current advances of nanocellulose application in biomedical field. Carbohydr Res 2023; 532:108899. [PMID: 37478689 DOI: 10.1016/j.carres.2023.108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Nanocellulose (NC) is a natural fiber that can be extracted in fibrils or crystals form from different natural sources, including plants, bacteria, and algae. In recent years, nanocellulose has emerged as a sustainable biomaterial for various medicinal applications including drug delivery systems, wound healing, tissue engineering, and antimicrobial treatment due to its biocompatibility, low cytotoxicity, and exceptional water holding capacity for cell immobilization. Many antimicrobial products can be produced due to the chemical functionality of nanocellulose, such disposable antibacterial smart masks for healthcare use. This article discusses comprehensively three types of nanocellulose: cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and bacterial nanocellulose (BNC) in view of their structural and functional properties, extraction methods, and the distinctive biomedical applications based on the recently published work. On top of that, the biosafety profile and the future perspectives of nanocellulose-based biomaterials have been further discussed in this review.
Collapse
Affiliation(s)
- M Y Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Y L Kong
- Department of Engineering and Applied Sciences, American Degree Program, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - M Y Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - C Y Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - W F Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Sun Q, Yin S, He Y, Cao Y, Jiang C. Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2185. [PMID: 37570503 PMCID: PMC10421492 DOI: 10.3390/nano13152185] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Probiotics have garnered significant attention in recent years due to their potential advantages in diverse biomedical applications, such as acting as antimicrobial agents, aiding in tissue repair, and treating diseases. These live bacteria must exist in appropriate quantities and precise locations to exert beneficial effects. However, their viability and activity can be significantly impacted by the surrounding tissue, posing a challenge to maintain their stability in the target location for an extended duration. To counter this, researchers have formulated various strategies that enhance the activity and stability of probiotics by encapsulating them within biomaterials. This approach enables site-specific release, overcoming technical impediments encountered during the processing and application of probiotics. A range of materials can be utilized for encapsulating probiotics, and several methods can be employed for this encapsulation process. This article reviews the recent advancements in probiotics encapsulated within biomaterials, examining the materials, methods, and effects of encapsulation. It also provides an overview of the hurdles faced by currently available biomaterial-based probiotic capsules and suggests potential future research directions in this field. Despite the progress achieved to date, numerous challenges persist, such as the necessity for developing efficient, reproducible encapsulation methods that maintain the viability and activity of probiotics. Furthermore, there is a need to design more robust and targeted delivery vehicles.
Collapse
Affiliation(s)
- Qiqi Sun
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
| | - Sheng Yin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yingxu He
- School of Computing, National University of Singapore, Singapore 119077, Singapore;
| | - Yi Cao
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan 250117, China; (Q.S.); (S.Y.)
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210000, China
| |
Collapse
|
9
|
Kistaubayeva A, Abdulzhanova M, Zhantlessova S, Savitskaya I, Karpenyuk T, Goncharova A, Sinyavskiy Y. The Effect of Encapsulating a Prebiotic-Based Biopolymer Delivery System for Enhanced Probiotic Survival. Polymers (Basel) 2023; 15:polym15071752. [PMID: 37050363 PMCID: PMC10097185 DOI: 10.3390/polym15071752] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 04/03/2023] Open
Abstract
Orally delivered probiotics must survive transit through harsh environments during gastrointestinal (GI) digestion and be delivered and released into the target site. The aim of this work was to evaluate the survivability and delivery of gel-encapsulated Lactobacillus rhamnosus GG (LGG) to the colon. New hybrid symbiotic beads alginate/prebiotic pullulan/probiotic LGG were obtained by the extrusion method. The average size of the developed beads was 3401 µm (wet), 921 µm (dry) and the bacterial titer was 109 CFU/g. The morphology of the beads was studied by a scanning electron microscope, demonstrating the structure of the bacterial cellulose shell and loading with probiotics. For the first time, we propose adding an enzymatic extract of feces to an artificial colon fluid, which mimics the total hydrolytic activity of the intestinal microbiota. The beads can be digested by fecalase with cellulase activity, indicating intestinal release. The encapsulation of LGG significantly enhanced their viability under simulated GI conditions. However, the beads, in combination with the prebiotic, provided greater protection of bacteria, enhancing their survival and even increasing cell numbers in the capsules. These data suggest the promising prospects of coencapsulation as an innovative delivery method based on the inclusion of probiotic bacteria in a symbiotic matrix.
Collapse
Affiliation(s)
- Aida Kistaubayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Malika Abdulzhanova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Sirina Zhantlessova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Irina Savitskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Tatyana Karpenyuk
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Alla Goncharova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | | |
Collapse
|
10
|
Feed additives of bacterial origin as an immunoprotective or imunostimulating factor. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
Since January 2006 when using antibiotics as growth promoters in animal feed have been banned scientists are looking for the best resolution to apply alternative substances. Extensive research into the health-promoting properties of probiotics and prebiotics has led to significant interest in the mechanisms of action of the combined administration of these feed additives as a synbiotic. Subsequent research has led to the development of new products. Among the most important health benefits of additives are, inhibiting the growth of pathogenic bacteria in the GI tract, maintenance of homeostasis, treatment of inflammatory bowel diseases, and increase in immunity. Specific immunomodulatory mechanisms of action are not well understood and the effect is not always positive, though there are no reports of adverse effects of these substances found in the literature. For this reason, research is still being conducted on their proper application. However, due to the difficulties of carrying out research on humans, evidence of the beneficial effect of these additives comes mainly from experiments on animals. The objective of the present work was to assess the effect of probiotics, prebiotics, and synbiotics, as well as new additives including postbiotics, proteobiotics, nutribiotics, and pharmabiotics, on specific immunomodulatory mechanisms of action, increase in immunity, the reduction of a broad spectrum of diseases.
Collapse
|
11
|
Effect of different drying methods on the functional properties of probiotics encapsulated using prebiotic substances. Appl Microbiol Biotechnol 2023; 107:1575-1588. [PMID: 36729228 DOI: 10.1007/s00253-023-12398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Probiotics and prebiotics together work synergistically as synbiotics and confer various health benefits. Many studies on synbiotic foods only focus on the survival of probiotics but fail to evaluate their functional properties. The impact on functional properties should be explored to better understand its therapeutic efficacy. In this work, probiotics (Lactiplantibacillus plantarum NCIM 2083) were encapsulated with prebiotics (fructooligosaccharide + whey protein + maltodextrin) using spray-drying (SD), freeze-drying (FD), spray-freeze-drying (SFD), and refractance window-drying (RWD) techniques. Aggregation, intestinal adhesion, antagonistic activity, and bile salt hydrolase (BSH) activity of probiotics were studied before and after the encapsulation process. The SFD probiotics showed better aggregation ability (79% at 24-h incubation), on par with free cells (FC) (81% at 24-h incubation). The co-aggregation ability of encapsulated probiotics has drastic variations with each pathogenic strain. The adhesion ability of probiotics in chicken intestinal mucus was assessed by the crystal violet method, indicating no significant variations between FC and SFD probiotics. Also, encapsulated probiotics exhibit antagonistic activity (zone of inhibition in mm) against gut pathogens E. coli (11.33 to 17.34), S. faecalis (8.83 to 15.32), L. monocytogenes (13.67 to 18), S. boydii (12.17 to 15.5), and S. typhi (2.17 to 6.86). Overall, these studies confirm the significance and impact of various drying techniques on the functionality of encapsulated probiotics in synbiotic powders. KEY POINTS: • Understanding the relevance of processing effects on the functionality of probiotics. • Spray-freeze-dried probiotics showed superior functional properties. • The encapsulation process had no significant impact on bile salt hydrolase activity.
Collapse
|
12
|
Polyphenols as Drivers of a Homeostatic Gut Microecology and Immuno-Metabolic Traits of Akkermansia muciniphila: From Mouse to Man. Int J Mol Sci 2022; 24:ijms24010045. [PMID: 36613488 PMCID: PMC9820369 DOI: 10.3390/ijms24010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Akkermansia muciniphila is a mucosal symbiont considered a gut microbial marker in healthy individuals, as its relative abundance is significantly reduced in subjects with gut inflammation and metabolic disturbances. Dietary polyphenols can distinctly stimulate the relative abundance of A. muciniphila, contributing to the attenuation of several diseases, including obesity, type 2 diabetes, inflammatory bowel diseases, and liver damage. However, mechanistic insight into how polyphenols stimulate A. muciniphila or its activity is limited. This review focuses on dietary interventions in rodents and humans and in vitro studies using different phenolic classes. We provide critical insights with respect to potential mechanisms explaining the effects of polyphenols affecting A. muciniphila. Anthocyanins, flavan-3-ols, flavonols, flavanones, stilbenes, and phenolic acids are shown to increase relative A. muciniphila levels in vivo, whereas lignans exert the opposite effect. Clinical trials show consistent findings, and high intervariability relying on the gut microbiota composition at the baseline and the presence of multiple polyphenol degraders appear to be cardinal determinants in inducing A. muciniphila and associated benefits by polyphenol intake. Polyphenols signal to the AhR receptor and impact the relative abundance of A. muciniphila in a direct and indirect fashion, resulting in the restoration of intestinal epithelial integrity and homeostatic crosstalk with the gut microbiota by affecting IL-22 production. Moreover, recent evidence suggests that A. muciniphila participates in the initial hydrolysis of some polyphenols but does not participate in their complete metabolism. In conclusion, the consumption of polyphenol-rich foods targeting A. muciniphila as a pivotal intermediary represents a promising precision nutritional therapy to prevent and attenuate metabolic and inflammatory diseases.
Collapse
|
13
|
Lee Y, Kang YR, Chang YH. Effect of pectic oligosaccharide on probiotic survival and physicochemical properties of hydrogel beads for synbiotic encapsulation of Lactobacillus bulgaricus. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Sbehat M, Mauriello G, Altamimi M. Microencapsulation of Probiotics for Food Functionalization: An Update on Literature Reviews. Microorganisms 2022; 10:microorganisms10101948. [PMID: 36296223 PMCID: PMC9610121 DOI: 10.3390/microorganisms10101948] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Functional foods comprise the largest growing food category due to both consumer demands and health claims by manufacturers. Probiotics are considered one of the best choices for meeting these demands. Traditionally, the food vehicle for introducing probiotics to consumers was dairy products, and to expand the benefits of probiotics for a wider range of consumers, the need to use other food items was essential. To achieve this goal while maximising the benefits of probiotics, protection methods used during food processing were tackled. The microencapsulation of probiotics is a promising methodology for achieving this function. This review highlights the use of the microencapsulation of probiotics in order to functionalise food items that initially were not considered suitable for probiotication, such as baked products, or to increase their functionality such as dairy products. The co-microencapsulation of probiotics with other functional ingredients such polyphenol, prebiotics, or omega-3 is also highlighted.
Collapse
Affiliation(s)
- Maram Sbehat
- Department of Nutrition and Food Technology, An-Najah National University, Nablus P.O. Box 7, Palestine
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Correspondence:
| | - Mohammad Altamimi
- Department of Nutrition and Food Technology, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
15
|
Shehata MG, Abd El-Aziz NM, Darwish AG, El-Sohaimy SA. Lacticaseibacillus paracasei KC39 Immobilized on Prebiotic Wheat Bran to Manufacture Functional Soft White Cheese. FERMENTATION-BASEL 2022; 8:496. [DOI: 10.3390/fermentation8100496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In the current study, probiotic Lacticaseibacillus paracasei KC39 was immobilized on wheat bran as a carrier. The immobilized synbiotic biocatalyst was freeze-dried and used as an adjunct during the production of functional soft white cheese. Free freeze-dried Lc. paracasei cells as an adjunct and a control cheese with a commercial starter were used for comparison. In addition to a fiber content of 1.12%, the functional cheese made using the synbiotic biocatalyst showed higher cell viabilities in the gastric and intestinal phases as well as an enhanced microstructure and favorable sensory characteristics. The presented immobilization method could be applied to the production of soft cheese and other functional food products for the stabilized delivery of both probiotics and dietary fibers.
Collapse
|
16
|
Applications of Probiotic-Based Multi-Components to Human, Animal and Ecosystem Health: Concepts, Methodologies, and Action Mechanisms. Microorganisms 2022; 10:microorganisms10091700. [PMID: 36144301 PMCID: PMC9502345 DOI: 10.3390/microorganisms10091700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 02/05/2023] Open
Abstract
Probiotics and related preparations, including synbiotics and postbiotics, are living and non-living microbial-based multi-components, which are now among the most popular bioactive agents. Such interests mainly arise from the wide range and numerous beneficial effects of their use for various hosts. The current minireview article attempts to provide an overview and discuss in a holistic way the concepts, methodologies, action mechanisms, and applications of probiotic-based multi-components in human, animal, plant, soil, and environment health. Probiotic-based multi-component preparations refer to a mixture of bioactive agents, containing probiotics or postbiotics as main functional ingredients, and prebiotics, protectants, stabilizers, encapsulating agents, and other compounds as additional constituents. Analyzing, characterizing, and monitoring over time the traceability, performance, and stability of such multi-component ingredients require relevant and sensitive analytical tools and methodologies. Two innovative profiling and monitoring methods, the thermophysical fingerprinting thermogravimetry-differential scanning calorimetry technique (TGA-DSC) of the whole multi-component powder preparations, and the Advanced Testing for Genetic Composition (ATGC) strain analysis up to the subspecies level, are presented, illustrated, and discussed in this review to respond to those requirements. Finally, the paper deals with some selected applications of probiotic-based multi-components to human, animal, plant, soil and environment health, while mentioning their possible action mechanisms.
Collapse
|
17
|
Characteristics of Probiotic Preparations and Their Applications. Foods 2022; 11:foods11162472. [PMID: 36010472 PMCID: PMC9407510 DOI: 10.3390/foods11162472] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/17/2022] Open
Abstract
The probiotics market is one of the fastest growing segments of the food industry as there is growing scientific evidence of the positive health effects of probiotics on consumers. Currently, there are various forms of probiotic products and they can be categorized according to dosage form and the site of action. To increase the effectiveness of probiotic preparations, they need to be specifically designed so they can target different sites, such as the oral, upper respiratory or gastrointestinal tracts. Here we review the characteristics of different dosage forms of probiotics and discuss methods to improve their bioavailability in detail, in the hope that this article will provide a reference for the development of probiotic products.
Collapse
|
18
|
Afzaal M, Saeed F, Ateeq H, Shah YA, Hussain M, Javed A, Ikram A, Raza MA, Nayik GA, Alfarraj S, Ansari MJ, Karabagias IK. Effect of Cellulose–Chitosan Hybrid-Based Encapsulation on the Viability and Stability of Probiotics under Simulated Gastric Transit and in Kefir. Biomimetics (Basel) 2022; 7:biomimetics7030109. [PMID: 35997429 PMCID: PMC9397047 DOI: 10.3390/biomimetics7030109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Encapsulation comprises a promising potential for the targeted delivery of entrapped sensitive agents into the food system. A unique combination of cellulose/chitosan (Cl-Ch)-based hybrid wall material was employed to encapsulate L. plantarum by emulsion technique. The developed beads were further subjected to morphological and in vitro studies. The viability of free and encapsulated probiotics was also evaluated in kefir during storage. The developed beads presented porous spherical structures with a rough surface. A 1.58 ± 0.02 log CFU/mL, 1.26 ± 0.01 log CFU/mL, and 1.82 ± 0.01 log CFU/mL reduction were noticed for Cl-Ch hybrid cells under simulated gastro-intestinal and thermal conditions, respectively. The encapsulated cells were found to be acidic and thermally resistant compared to the free cells. Similarly, encapsulated probiotics showed better viability in kefir at the end of the storage period compared to free cells. In short, the newly developed Cl-Ch hybrid-based encapsulation has a promising potential for the targeted delivery of probiotics, as career agents, in gastric transit, and in foods.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Huda Ateeq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Yasir Abbas Shah
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ahsan Javed
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Ali Ikram
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Government Degree College Shopian, J&K 192303, India
- Correspondence: (G.A.N.); (I.K.K.)
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University, Bareilly 244001, India
| | - Ioannis K. Karabagias
- Department of Food Science & Technology, School of Agricultural Sciences, University of Patras, G. Seferi 2, 30100 Agrinio, Greece
- Correspondence: (G.A.N.); (I.K.K.)
| |
Collapse
|
19
|
Kvakova M, Kamlarova A, Stofilova J, Benetinova V, Bertkova I. Probiotics and postbiotics in colorectal cancer: Prevention and complementary therapy. World J Gastroenterol 2022; 28:3370-3382. [PMID: 36158273 PMCID: PMC9346452 DOI: 10.3748/wjg.v28.i27.3370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of human mortality worldwide. As conventional anticancer therapy not always being effective, there is growing interest in innovative “drug-free” cancer treatments or interventions that improve the efficacy of established therapy. CRC is associated with microbiome alterations, a process known as dysbiosis that involves depletion and/or enrichment of particular gut bacterial species and their metabolic functions. Supplementing patient treatment with traditional probiotics (with or without prebiotics), next-generation probiotics (NGP), or postbiotics represents a potentially effective and accessible complementary anticancer strategy by restoring gut microbiota composition and/or by signaling to the host. In this capacity, restoration of the gut microbiota in cancer patients can stabilize and enhance intestinal barrier function, as well as promote anticarcinogenic, anti-inflammatory, antimutagenic or other biologically important biochemical pathways that show high specificity towards tumor cells. Potential benefits of traditional probiotics, NGP, and postbiotics include modulating gut microbiota composition and function, as well as the host inflammatory response. Their application in CRC prevention is highlighted in this review, where we consider supportive in vitro, animal, and clinical studies. Based on emerging research, NGP and postbiotics hold promise in establishing innovative treatments for CRC by conferring physiological functions via the production of dominant natural products and metabolites that provide new host-microbiota signals to combat CRC. Although favorable results have been reported, further investigations focusing on strain and dose specificity are required to ensure the efficacy and safety of traditional probiotics, NGP, and postbiotics in CRC prevention and treatment.
Collapse
Affiliation(s)
- Monika Kvakova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice 04011, Slovakia
| | - Anna Kamlarova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice 04011, Slovakia
| | - Jana Stofilova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice 04011, Slovakia
| | - Veronika Benetinova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice 04011, Slovakia
| | - Izabela Bertkova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice 04011, Slovakia
| |
Collapse
|
20
|
Application of Functional and Edible Coatings and Films as Promising Strategies for Developing Dairy Functional Products—A Review on Yoghurt Case. COATINGS 2022. [DOI: 10.3390/coatings12060838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Edible coatings and films appear to be a very promising strategy for delivering bioactive compounds and probiotics in food systems when direct incorporation/inoculation is not an option. The production of dairy products has undergone radical modifications thanks to nanotechnology. Despite being a relatively new occurrence in the dairy sector, nanotechnology has quickly become a popular means of increasing the bioavailability and favorable health effects of a variety of bioactive components. The present review describes, in detail, the various processes being practiced worldwide for yoghurt preparation, microencapsulation, and nanotechnology-based approaches for preserving and/or enriching yoghurt with biologically, and its effect on health and in treating various diseases. In the case of yoghurt, as a perfect medium for functional ingredients supplementation, different gums (e.g., alginate, xanthan gum, and gum arabic), alone or in combination with maltodextrin, seem to be excellent coatings materials to encapsulate functional ingredients. Edible coatings and films are ideal carriers of bioactive compounds, such as antioxidants, antimicrobials, flavors, and probiotics, to improve the quality of dairy food products. Yoghurt is regarded as a functional superfood with a variety of health benefits, especially with a high importance for women’s health, as a probiotic. Consumption of yoghurt with certain types of probiotic strains which contain γ-linolenic acid or PUFA can help solve healthy problems or alleviate different symptoms, and this review will be shed light on the latest studies that have focused on the impact of functional yoghurt on women’s health. Recently, it has been discovered that fermented milk products effectively prevent influenza and COVID-19 viruses. Bioactive molecules from yoghurt are quite effective in treating various inflammations, including so-called “cytokine storms” (hypercytokinaemia) caused by COVID-19.
Collapse
|
21
|
Boahen A, Than LTL, Loke YL, Chew SY. The Antibiofilm Role of Biotics Family in Vaginal Fungal Infections. Front Microbiol 2022; 13:787119. [PMID: 35694318 PMCID: PMC9179178 DOI: 10.3389/fmicb.2022.787119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
“Unity in strength” is a notion that can be exploited to characterize biofilms as they bestow microbes with protection to live freely, escalate their virulence, confer high resistance to therapeutic agents, and provide active grounds for the production of biofilms after dispersal. Naturally, fungal biofilms are inherently resistant to many conventional antifungals, possibly owing to virulence factors as their ammunitions that persistently express amid planktonic transition to matured biofilm state. These ammunitions include the ability to form polymicrobial biofilms, emergence of persister cells post-antifungal treatment and acquisition of resistance genes. One of the major disorders affecting vaginal health is vulvovaginal candidiasis (VVC) and its reoccurrence is termed recurrent VVC (RVVC). It is caused by the Candida species which include Candida albicans and Candida glabrata. The aforementioned Candida species, notably C. albicans is a biofilm producing pathogen and habitually forms part of the vaginal microbiota of healthy women. Latest research has implicated the role of fungal biofilms in VVC, particularly in the setting of treatment failure and RVVC. Consequently, a plethora of studies have advocated the utilization of probiotics in addressing these infections. Specifically, the excreted or released compounds of probiotics which are also known as postbiotics are being actively researched with vast potential to be used as therapeutic options for the treatment and prevention of VVC and RVVC. These potential sources of postbiotics are harnessed due to their proven antifungal and antibiofilm. Hence, this review discusses the role of Candida biofilm formation in VVC and RVVC. In addition, we discuss the application of pro-, pre-, post-, and synbiotics either individually or in combined regimen to counteract the abovementioned problems. A clear understanding of the role of biofilms in VVC and RVVC will provide proper footing for further research in devising novel remedies for prevention and treatment of vaginal fungal infections.
Collapse
|
22
|
How to Improve Health with Biological Agents-Narrative Review. Nutrients 2022; 14:nu14091700. [PMID: 35565671 PMCID: PMC9103441 DOI: 10.3390/nu14091700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
The proper functioning of the human organism is dependent on a number of factors. The health condition of the organism can be often enhanced through appropriate supplementation, as well as the application of certain biological agents. Probiotics, i.e., live microorganisms that exert a beneficial effect on the health of the host when administered in adequate amounts, are often used in commonly available dietary supplements or functional foods, such as yoghurts. Specific strains of microorganisms, administered in appropriate amounts, may find application in the treatment of conditions such as various types of diarrhoea (viral, antibiotic-related, caused by Clostridioides difficile), irritable bowel syndrome, ulcerative colitis, Crohn’s disease, or allergic disorders. In contrast, live microorganisms capable of exerting influence on the nervous system and mental health through interactions with the gut microbiome are referred to as psychobiotics. Live microbes are often used in combination with prebiotics to form synbiotics, which stimulate growth and/or activate the metabolism of the healthy gut microbiome. Prebiotics may serve as a substrate for the growth of probiotic strains or fermentation processes. Compared to prebiotic substances, probiotic microorganisms are more tolerant of environmental conditions, such as oxygenation, pH, or temperature in a given organism. It is also worth emphasizing that the health of the host may be influenced not only by live microorganisms, but also by their metabolites or cell components, which are referred to as postbiotics and paraprobiotics. This work presents the mechanisms of action employed by probiotics, prebiotics, synbiotics, postbiotics, paraprobiotics, and psychobiotics, together with the results of studies confirming their effectiveness and impact on consumer health.
Collapse
|
23
|
Hijová E. Synbiotic Supplements in the Prevention of Obesity and Obesity-Related Diseases. Metabolites 2022; 12:metabo12040313. [PMID: 35448499 PMCID: PMC9031884 DOI: 10.3390/metabo12040313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity and being overweight have reached incredible proportions worldwide and are one of the most common human health problems. The causes of obesity are multifactorial, including a complex interplay among genes, metabolism, diet, physical activity, and the environment. The intestinal microbiota has the ability to affect the host physiology for both benefit and damage, either directly or through microbial metabolites. The aim of this review is to discuss the mechanisms by which the intestinal microbiota could act as a key modifier of obesity and related metabolic abnormalities. The synbiotic components provide an optimal target for modulation of the intestinal microbiota and help reshape the metabolic profile in obese people. The development of novel functional foods containing synbiotic ingredients may present a support in the prevention of obesity as one of the risk factors for chronic diseases. Knowledge of the synbiotic mechanisms of action and the use of new functional foods supplemented with probiotics and prebiotics will facilitate the clinical application and development of individual health care strategies.
Collapse
Affiliation(s)
- Emília Hijová
- Center of Clinical and Preclinical Research (MEDIPARK), Department of Experimental Medicine, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| |
Collapse
|
24
|
Bermúdez‐Quiñones G, Ochoa‐Martínez LA, Gallegos‐Infante JA, Rutiaga‐Quiñones OM, Lara‐Ceniceros TE, Delgado‐Licon E, González‐Herrera SM. Synbiotic microcapsules using agavins and inulin as wall materials for
Lactobacillus casei
and
Bifidobacterium breve
: Viability, physicochemical properties, and resistance to in vitro oro‐gastrointestinal transit. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Gabriela Bermúdez‐Quiñones
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| | - Luz Araceli Ochoa‐Martínez
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| | - José Alberto Gallegos‐Infante
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| | - Olga Miriam Rutiaga‐Quiñones
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| | - Tania Ernestina Lara‐Ceniceros
- Advanced Functional Materials and Nanotechnology Group Centro de Investigación en Materiales Avanzados S. C. (CIMAV – Unidad Monterrey) PIIT Apodaca México
| | - Efrén Delgado‐Licon
- Department of Family and Consumer Sciences New Mexico State University Las Cruces New Mexico USA
| | - Silvia Marina González‐Herrera
- Departamento de Ingenierías Química y Bioquímica Tecnológico Nacional de México/Instituto Tecnológico de Durango Durango México
| |
Collapse
|
25
|
Physicochemical and Functional Characterization of Newly Designed Biopolymeric-Based Encapsulates with Probiotic Culture and Charantin. Foods 2021; 10:foods10112677. [PMID: 34828958 PMCID: PMC8620448 DOI: 10.3390/foods10112677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/02/2023] Open
Abstract
The identification of novel sources of synbiotic agents with desirable functionality is an emerging concept. In the present study, novel encapsulates containing probiotic L. acidophilus LA-05® (LA) and Charantin (CT) were produced by freeze-drying technique using pure Whey Protein Isolate (WPI), pure Maltodextrin (MD), and their combination (WPI + MD) in 1:1 core ratio, respectively. The obtained microparticles, namely WPI + LA + CT, MD + LA + CT, and WPI + MD + LA + CT were tested for their physicochemical properties. Among all formulations, combined carriers (WPI + MD) exhibited the highest encapsulation yields for LA (98%) and CT (75%). Microparticles showed a mean d (4, 3) ranging from 50.393 ± 1.26 to 68.412 ± 3.22 μm. The Scanning Electron Microscopy revealed uniformly amorphous and glass-like structures, with a noticeably reduced porosity when materials were combined. In addition, Fourier Transform Infrared spectroscopy highlighted the formation of strong hydrogen bonds supporting the interactions between the carrier materials (WPI and MD) and CT. In addition, the thermal stability of the combined WPI + MD was superior to that of pure WPI and pure MD, as depicted by the Thermogravimetric and Differential Scanning Calorimetry analysis. More interestingly, co-encapsulation with CT enhanced LA viability (8.91 ± 0.3 log CFU/g) and Cells Surface Hydrophobicity (82%) in vitro, in a prebiotic-like manner. Correspondingly, CT content was heightened when co-encapsulated with LA. Besides, WPI + MD + LA + CT microparticles exhibited higher antioxidant activity (79%), α-amylase inhibitory activity (83%), and lipase inhibitory activity (68%) than single carrier ones. Furthermore, LA viable count (7.95 ± 0.1 log CFU/g) and CT content (78%) were the highest in the blended carrier materials after 30 days of storage at 4 °C. Synbiotic microparticle WPI + MD + LA + CT represents an effective and promising approach for the co-delivery of probiotic culture and bioactive compounds in the digestive tract, with enhanced functionality and storage properties.
Collapse
|
26
|
Panyod S, Wu WK, Chen CC, Wu MS, Ho CT, Sheen LY. Modulation of gut microbiota by foods and herbs to prevent cardiovascular diseases. J Tradit Complement Med 2021; 13:107-118. [PMID: 36970453 PMCID: PMC10037074 DOI: 10.1016/j.jtcme.2021.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
Dietary nutrients are associated with the development of cardiovascular disease (CVD) both through traditional pathways (inducing hyperlipidemia and chronic inflammation) and through the emergence of a metaorganism-pathogenesis pathway (through the gut microbiota, its metabolites, and host). Several molecules from food play an important role as CVD risk-factor precursors either themselves or through the metabolism of the gut microbiome. Animal-based dietary proteins are the primary source of CVD risk-factor precursors; however, some plants also possess these precursors, though at relatively low levels compared with animal-source food products. Various medications have been developed to treat CVD through the gut-microbiota-circulation axis, and they exhibit potent effects in CVD treatment. Nevertheless, such medicines are still being improved, and there are many research gaps that need to be addressed. Furthermore, some medications have unpleasant or adverse effects. Numerous foods and herbs impart beneficial effects upon health and disease. In the past decade, many studies have focused on treating and preventing CVD by modulating the gut microbiota and their metabolites. This review provides an overview of the available information, summarizes current research related to the gut-microbiota-heart axis, enumerates the foods and herbs that are CVD-risk precursors, and illustrates how metabolites become CVD risk factors through the metabolism of gut microbiota. Moreover, we present perspectives on the application of foods and herbs-including prebiotics, probiotics, synbiotics, postbiotics, and antibiotic-like substances-as CVD prevention agents to modulate gut microbiota by inhibiting gut-derived CVD risk factors. Taxonomy classification by EVISE Cardiovascular disease, gut microbiota, herbal medicine, preventive medicine, dietary therapy, nutrition supplements.
Collapse
|