1
|
Zhang T, Jian Q, Yao X, Guan L, Li L, Liu F, Zhang C, Li D, Tang H, Lu L. Plant growth-promoting rhizobacteria (PGPR) improve the growth and quality of several crops. Heliyon 2024; 10:e31553. [PMID: 38818163 PMCID: PMC11137509 DOI: 10.1016/j.heliyon.2024.e31553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are known to have the effect of promoting plant growth. In this paper, three PGPR strains were selected from the previous work, which had plant growth-promoting activities such as phosphate solubilization, nitrogen fixation, phosphorus mobilization, etc. These strains named FJS-3(Burkholderia pyromania), FJS-7(Pseudomonas rhodesiae), and FJS-16(Pseudomonas baetica), respectively, were prepared into solid biological agents. Three widely planted commercial crops (tea plant, tobacco, and chili pepper) were selected for PGPR growth promotion verification. The results showed that the new shoots of tea seedlings under PGPR treatment were much more than the control. We also used tobacco, another important crop in Guizhou, to test the growth-promoting effect of individual bacteria, and the results showed that each of them could promote the growth of tobacco plants, and FJS-3(Burkholderia pyrrocinia) had the best effect. In addition, we carried out experiments on tobacco and pepper using multi-strain PGPR, the tobacco plants' height, fresh, and root weight increased by 30.15 %, 37.36 %, and 54.5 %, respectively, and the pepper plants' increased by 30.10 %, 56.38 % and 43.18 %, respectively, which both showed significantly better effects than that of a single strain. To further test the field performance, field trials were carried out in a mature Longjing43 tea plantation in Guizhou. There were four treatments: no fertilization (T1), combined application of PGPR biological agent and compound fertilizer (T2), only application of PGPR (T3), and only application of compound fertilizer (T4). In terms of yield, grouped with or without PGPR, there was a 15.38 % (T2:T4) and 92.31 % (T3:T1) increase between them, respectively. The tea's yield and tea flavor substances such as tea polyphenols, caffeine, and theanine were detected, and the T2 showed the most significant positive effect on both sides. Especially, an important indicator of Matcha green tea is the color, chlorophyll content was then tested, and PGPR application increased it and improved the appearance. All these results demonstrated that the PGPR we screened could significantly promote plant growth and quality improvement, and had good application potential in crop planting, which could contribute to environmental protection and economic growth.
Collapse
Affiliation(s)
- Tongrui Zhang
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Qinhao Jian
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xinzhuan Yao
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Li Guan
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Linlin Li
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Fei Liu
- WENGFU GROUP, Guiyang 550025, China
| | | | - Dan Li
- Wengfu Group Agriservice Co., Ltd, Fuquan 550500, China
| | - Hu Tang
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Litang Lu
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| |
Collapse
|
2
|
Jakubczyk K, Szymczykowska K, Kika J, Janda-Milczarek K, Palma J, Melkis K, Alshekh R, Maciejewska-Markiewicz D. Exploring the Influence of Origin, Harvest Time, and Cultivation Method on Antioxidant Capacity and Bioactive Compounds of Matcha Teas. Foods 2024; 13:1270. [PMID: 38672941 PMCID: PMC11048880 DOI: 10.3390/foods13081270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Matcha, or powdered green tea, has been gaining popularity and is no longer consumed only in the form of infusions, finding new uses in gastronomy and the food industry. The range of teas available on the food market has expanded considerably; hence, the aim of this study was to determine, for the first time, the antioxidant capacity and contents of antioxidant compounds in various Matcha teas available on the Polish market, taking into account the country of origin, time of harvest, and conventional vs. organic cultivation. Eleven green-tea powders were used in the analyses performed using spectrophotometric methods (Trolox equivalent antioxidant capacity, Ferric-Ion-Reducing Antioxidant Power, Total Polyphenol Content, Total Flavonoid Content, Vitamin C Content) and HPLC methods (polyphenolic acids, flavonoids, and caffeine). Antioxidant capacity ranged from 7.26 to 9.54 mM Trolox equivalent/L while reducing power ranged from 1845.45 to 2266.12 Fe(II)/L. Total phenolic content amounted to 820.73-1017.83 mg gallic acid equivalent/L, and total flavonoid content was 864.71-1034.40 mg rutin equivalent /L. A high vitamin C content was found, ranging from 38.92 to 70.15 mg/100 mL. Additionally, a high content of caffeine that ranged between 823.23 and 7313.22 mg/L was noted. Moreover, a high content of polyphenolic compounds, including epicatechin gallate, myricetin, gallic acid, and 4-hydroxybenzoic acid, was found. The phytochemical composition and antioxidant properties depended on the harvest time, type of cultivation, and country of origin. Therefore, Matcha tea infusions have been shown to be a valuable source of antioxidants that can be used in the daily diet.
Collapse
Affiliation(s)
- Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (K.S.); (J.K.); (K.J.-M.); (K.M.); (R.A.); (D.M.-M.)
| | - Kinga Szymczykowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (K.S.); (J.K.); (K.J.-M.); (K.M.); (R.A.); (D.M.-M.)
| | - Joanna Kika
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (K.S.); (J.K.); (K.J.-M.); (K.M.); (R.A.); (D.M.-M.)
| | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (K.S.); (J.K.); (K.J.-M.); (K.M.); (R.A.); (D.M.-M.)
| | - Joanna Palma
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Klaudia Melkis
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (K.S.); (J.K.); (K.J.-M.); (K.M.); (R.A.); (D.M.-M.)
| | - Rami Alshekh
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (K.S.); (J.K.); (K.J.-M.); (K.M.); (R.A.); (D.M.-M.)
| | - Dominika Maciejewska-Markiewicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland; (K.S.); (J.K.); (K.J.-M.); (K.M.); (R.A.); (D.M.-M.)
| |
Collapse
|
3
|
Gholamhosseini A, Banaee M, Zeidi A, Multisanti CR, Faggio C. Individual and combined impact of microplastics and lead acetate on the freshwater shrimp (Caridina fossarum): Biochemical effects and physiological responses. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 262:104325. [PMID: 38428349 DOI: 10.1016/j.jconhyd.2024.104325] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Microplastics and heavy metals pollution is recognised as a major problem affecting aquatic ecosystems. For this reason, this study aims to assess the toxicity of different concentrations of polyethylene microplastics (PE-MPs) (0.0, 500, and 1000 μg L-1) with a mean size of 15-25 μm and lead acetate Pb(C2H3O2)2 (0.0, 2.5, and 5 mg L-1), both individually and in combination, through the exposure of the freshwater grass shrimp, Caridinia fossarum for 15 days, focusing on microplastic interaction with co-occurring contaminants. After being exposed to both contaminants, either individually or in combination, significant alterations in numerous biochemical markers were observed. Specifically, exposure to lead acetate alone resulted in significant changes across ALP, AST, ALT, LDH, GGT, and BChE enzyme activity levels indicating hepatotoxicity and neurotoxicity. Also, Pb exposure led to alterations in total antioxidant capacity, MDA, total lipids, and glycogen contents, signalling the onset of oxidative stress. Exposure to PE-MPs alone led to changes in ALP, LDH, GGT, and BChE enzyme levels, and in MDA, total lipids, and glycogen samples' contents. Remarkably, the study observed increased bioaccumulation of lead acetate in samples treated with the combination, emphasizing the synergistic impact of PE-MPs on the toxicity of lead acetate. This synergy was also evident in AST and ALT enzyme activity levels and MDA contents. This underscores the necessity for measures to address both microplastic pollution and heavy metal contamination, taking into account the synergistic behaviour of MPs in the presence of concurrent contaminants.
Collapse
Affiliation(s)
- Amin Gholamhosseini
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Mahdi Banaee
- Aquaculture of Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amir Zeidi
- Aquaculture of Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
4
|
Chen Y, Lai L, You Y, Gao R, Xiang J, Wang G, Yu W. Quantitative Analysis of Bioactive Compounds in Commercial Teas: Profiling Catechin Alkaloids, Phenolic Acids, and Flavonols Using Targeted Statistical Approaches. Foods 2023; 12:3098. [PMID: 37628097 PMCID: PMC10453493 DOI: 10.3390/foods12163098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Tea, an extensively consumed and globally popular beverage, has diverse chemical compositions that ascertain its quality and categorization. In this investigation, we formulated an analytical and quantification approach employing reversed-phase ultra-high-performance liquid chromatography (UHPLC) methodology coupled with diode-array detection (DAD) to precisely quantify 20 principal constituents within 121 tea samples spanning 6 distinct variants. The constituents include alkaloids, catechins, flavonols, and phenolic acids. Our findings delineate that the variances in chemical constitution across dissimilar tea types predominantly hinge upon the intricacies of their processing protocols. Notably, green and yellow teas evinced elevated concentrations of total chemical moieties vis à vis other tea classifications. Remarkably divergent levels of alkaloids, catechins, flavonols, and phenolic acids were ascertained among the disparate tea classifications. By leveraging random forest analysis, we ascertained gallocatechin, epigallocatechin gallate, and epicatechin gallate as pivotal biomarkers for effective tea classification within the principal cadre of tea catechins. Our outcomes distinctly underscore substantial dissimilarities in the specific compounds inherent to varying tea categories, as ascertained via the devised and duly validated approach. The implications of this compositional elucidation serve as a pertinent benchmark for the comprehensive assessment and classification of tea specimens.
Collapse
Affiliation(s)
- Yuan Chen
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (R.G.); (J.X.)
| | - Lingling Lai
- Fujian Tea Science Society, Fuzhou 350013, China;
| | - Youli You
- Yongchun County Cultivation Service Center, Quanzhou 362699, China;
| | - Ruizhen Gao
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (R.G.); (J.X.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxin Xiang
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (R.G.); (J.X.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA;
| | - Wenquan Yu
- Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Y.C.); (R.G.); (J.X.)
| |
Collapse
|
5
|
Poláková K, Bobková A, Demianová A, Bobko M, Lidiková J, Jurčaga L, Belej Ľ, Mesárošová A, Korčok M, Tóth T. Quality Attributes and Sensory Acceptance of Different Botanical Coffee Co-Products. Foods 2023; 12:2675. [PMID: 37509767 PMCID: PMC10378423 DOI: 10.3390/foods12142675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Coffee processing is a major contributor to the creation of food and product waste. Using coffee co-products can play an essential role in addressing environmental problems and issues with nutritionally unbalanced foods, population growth, and food-related diseases. This research aimed to determine the quality and sensory parameters (aw, pH, dry matter, TAC, TPC, fat, fatty acids profile, fiber, caffeine, chlorogenic acids, color, and sensory analysis) of different botanical origins of cascara (coffee husks) and silverskin (thin layer). The results of this study show that silverskin and cascara are a good source of TAC (1S 58.17 ± 1.28%, 2S 46.65 ± 1.20%, 1C 36.54 ± 1.84%, 2C 41.12 ± 2.11%). Cascara showed the presence of polyphenols (2C 49.135 g GAE·kg-1). Coffee co-products are good sources of fiber. Silverskin had higher values of caffeine than cascara. Palmitic, stearic, oleic, linoleic, and arachidic acids were the most represented acids in the samples. Given the obtained results, cascara can be considered "low-fat" (1C 4.240 g·kg-1 and 2C 5.4 g·kg-1). Based on the sensory evaluation, no sample reached the acceptable index value of 70%. Understanding the link between the character, identification properties, and composition of coffee co-products of different botanical origins can enable their application in the food industry.
Collapse
Affiliation(s)
- Katarína Poláková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alica Bobková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alžbeta Demianová
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Marek Bobko
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Judita Lidiková
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Lukáš Jurčaga
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Ľubomír Belej
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Andrea Mesárošová
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Melina Korčok
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Tomáš Tóth
- Institute of Food Sciences, The Faculty of Biotechnology and Foods Sciences, The Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
6
|
Girolametti F, Annibaldi A, Illuminati S, Damiani E, Carloni P, Truzzi C. Essential and Potentially Toxic Elements (PTEs) Content in European Tea ( Camellia sinensis) Leaves: Risk Assessment for Consumers. Molecules 2023; 28:molecules28093802. [PMID: 37175212 PMCID: PMC10179902 DOI: 10.3390/molecules28093802] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Tea (Camellia sinensis) is the second most consumed beverage worldwide, playing a key role in the human diet. Tea is considered a healthy drink, as its consumption has been linked to a lower risk of cardiovascular disease-related events and death, stroke, metabolic syndrome and obesity. However, several studies have shown that C. sinensis is a hyperaccumulator of Al and other elements that are considered potentially toxic. In the present study, the contents of 15 elements (both essential and toxic) were determined for the first time in tea leaves collected in tea gardens located in six different European countries and processed to provide black and green tea. The results showed that Al was the major toxic element detected, followed by Ni, Cr, Pb, As, Cd, Ag, and Hg. Essential elements were detected in the order of Mn, Fe, Zn, Cu, Co, and Se. Statistically significant correlations (p < 0.05) were found in the distribution of some elements, highlighting mechanisms of synergic or antagonist interaction. Multivariate analysis revealed that geographical origin was the main driver in clustering the samples, while the different treatment processes (black or green) did not significantly affect the contents of elements in the leaves. The estimation of potential non-carcinogenic risk revealed no risk for the consumption of European teas for consumers in terms of potentially toxic elements.
Collapse
Affiliation(s)
- Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Silvia Illuminati
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Patricia Carloni
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
7
|
Bobková A, Demianová A, Poláková K, Capcarová M, Lidiková J, Árvay J, Hegedűsová A, Bobko M, Jurčaga L, Belej Ľ. Variability of caffeine content in green and roasted Coffea arabica regarding the origin, post-harvest processing, and altitude, and overview of recommended daily allowance. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:989-998. [PMID: 36573489 DOI: 10.1080/03601234.2022.2159739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Caffeine content is a crucial attribute of coffee. Its concentration and thus maximum cups of Coffea arabica from Africa, Asia, Central America, and South America from different altitudes of growing areas, altitude, and process using different post-harvest processing (dry, wet, and pulped natural). Our results suggest that geographical origin might affect the alkaloid concentration in C. arabica. The caffeine concentration pattern in green samples was as follows: Central America > South America > Asia > Africa. Altitude affected the concentrations, lowlands > midlands > highlands, however, not significantly. Given caffeine is thermostable, the medium roasting process did not affect the concentration of caffeine directly, but a small increase was observed. Scientific opinion on the safety of habitual caffeine consumption of up to 400 mg per day does not raise safety concerns for non-pregnant adults. A cup (7 g coffee in 120 mL of water) was used for recalculation. Results suggest that mostly highlands and midlands coffee from Africa reached levels of caffeine that might be consumed in more than 5.5 cups a day.
Collapse
Affiliation(s)
- Alica Bobková
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Alžbeta Demianová
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Katarína Poláková
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Marcela Capcarová
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Judita Lidiková
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Július Árvay
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Alžbeta Hegedűsová
- Faculty of Agrobiology and Food Resources, Institute of Horticulture, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Marek Bobko
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Lukáš Jurčaga
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Ľubomír Belej
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, The Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
8
|
Effects of Different Drought Degrees on Physiological Characteristics and Endogenous Hormones of Soybean. PLANTS 2022; 11:plants11172282. [PMID: 36079664 PMCID: PMC9459783 DOI: 10.3390/plants11172282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Drought affects crop developmentnand growth. To explore the physiological effects of drought stress on soybean, HeiNong44 (HN44) and HeiNong65 (HN65) varieties were used as experimental materials and PEG-6000 was used as the osmotic medium. The antioxidant enzyme activity, osmotic adjustment substance content, antioxidant capacity, and endogenous hormone content of the two soybean varieties were studied under different drought degrees and different treatment durations. Drought stress caused significant physiological changes in soybean. The antioxidant enzyme activities, osmoregulation substance content, and total antioxidant capacity (T-AOC) of HN65 and HN44 showed an increasing trend under mild and moderate drought, however, they first increased and then decreased under severe drought conditions. Following the extension of treatment time, malondialdehyde (MDA) showed an increasing trend. As drought increased, gibberellin (GA) content showed a decreasing trend, while abscisic acid (ABA), salicylic acid (SA), and zeatin nucleoside (ZA) content showed an increasing trend. The auxin (IAA) content of the two varieties showed opposite change trends. In short, drought had a significant impact on the physiology of these two soybean varieties; however, overall, the drought resistance of HN65 was lower than that of HN44. This study provides a research theoretical basis for addressing the drought resistance mechanism and the breeding of drought resistant soybean varieties.
Collapse
|
9
|
Nguyen MH, Nguyen TD, Vu MT, Duong HA, Pham HV. Determination of Glyphosate, Glufosinate, and Their Major Metabolites in Tea Infusions by Dual-Channel Capillary Electrophoresis following Solid-Phase Extraction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5687025. [PMID: 35402060 PMCID: PMC8993582 DOI: 10.1155/2022/5687025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
In this study, two analytical procedures were developed and validated using dual-channel capillary electrophoresis-coupled contactless conductivity detection (CE-C4D) followed by solid-phase extraction (SPE) for simultaneous determination of glyphosate (GLYP), glufosinate (GLUF), and their two major metabolites, aminomethylphosphonic acid (AMPA) and 3-(methylphosphinico) propionic acid (MPPA), respectively, in a popular beverage such as tea infusions. GLYP, GLUF, and AMPA were analyzed in the first channel using background electrolyte (BGE) of 1 mM histidine (His) adjusted to pH 2.75 by acetic acid (Ace). In contrast, MPPA was quantified in the second channel with a BGE of 30 mM His adjusted to pH 6.7 by 3-(N-morpholino) propanesulfonic acid (MOPS) and 10 µM of cetyltrimethylammonium bromide (CTAB). In addition, the samples of tea infusions were treated using SPE with 10 mL of 0.5 mM HCl in methanol as eluent. At the optimized conditions, the method detection limit (MDL) of GLYP, GLUF, AMPA, and MPPA is 0.80, 1.56, 0.56, and 0.54 μg/l, respectively. The methods were then applied to analyze four target compounds in 16 samples of tea infusions. GLYP was found in two infusion samples of oolong tea with concentrations ranging from 5.34 to 10.74 µg/L, and GLUF was recognized in three samples of green tea infusion in the range of 45.1-53.9 µg/L.
Collapse
Affiliation(s)
- Manh Huy Nguyen
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
| | - Thanh Dam Nguyen
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
| | - Minh Tuan Vu
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
| | - Hong Anh Duong
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
- Research Centre for Environmental Technology and Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
| | - Hung Viet Pham
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
- Research Centre for Environmental Technology and Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
| |
Collapse
|
10
|
PAN T, YAN R, CHEN Q. Geographical origin of green tea identification using LASSO and ANOVA. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.41922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Huang Y, Su E, Mu X, Wang J, Wang Y, Xie J, Ying R. The recent development of nanozymes for food quality and safety detection. J Mater Chem B 2022; 10:1359-1368. [DOI: 10.1039/d1tb02667d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As potential mimics of natural enzymes, nanozymes overcome many disadvantages of natural enzymes such as complex preparation and purification process, high price, poor stability and low recycling efficiency. Combined with...
Collapse
|
12
|
Effects of in vitro simulated digestion on the antioxidant activity of different Camellia sinensis (L.) Kuntze leaves extracts. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03864-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
AbstractThe stability of tea phenolic compounds is influenced by pH value and digestive processes. However, the complex mixture of constituents in tea may modulate the stability of these compounds during digestion. In this study, tea infusions obtained from green, black, and Oolong tea leaves were exposed to in vitro simulated gastrointestinal digestion, and the stability of ( +)-catechin, caffeine, (−)-epicatechin, epigallocatechin-3-gallate (EGCG), and gallic acid was compared to that of isolated compounds. Changes in antioxidant activity were also evaluated by means of DPPH assay and in a H2O2-induced in vitro oxidative stress model, using Caco-2 cells. The stability of teas antioxidant constituents was different when using teas extract, compared to the reference compound alone, with the total phenolic content being more stable in extracts containing them in higher amount. EGCG degradation correlated well with changes in the DPPH inhibition assay, confirming its pivotal role in the antioxidant activity of tea. Differently, the antioxidant effect in the in vitro cell-based model was much more related to the initial total phenolic content of the extracts, with green tea being more effective than black tea and Oolong tea. Moreover, the antioxidant activity of teas was strongly affected by gastrointestinal digestion. Taken together, these findings suggest a protective role of teas phytocomplex against gastrointestinal digestion of antioxidant constituents. In conclusion, the effect of gastrointestinal digestion on the antioxidant activity of tea should be taken into account, as this may be different from one extract to another and information on the stability of active constituents cannot be extrapolated from data obtained using single compounds.
Collapse
|