1
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Sun X, Yu Z, Liang C, Xie S, Wen J, Wang H, Wang J, Yang Y, Han R. Developmental changes in proteins of casein micelles in goat milk using data-independent acquisition-based proteomics methods during the lactation cycle. J Dairy Sci 2022; 106:47-60. [PMID: 36333141 DOI: 10.3168/jds.2022-22032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/12/2022] [Indexed: 11/05/2022]
Abstract
Casein micelles (CM) play an important role in milk secretion, stability, and processing. The composition and content of milk proteins are affected by physiological factors, which have been widely investigated. However, the variation in CM proteins in goat milk throughout the lactation cycle has yet to be fully clarified. In the current study, milk samples were collected at d 1, 3, 30, 90, 150, and 240 of lactation from 15 dairy goats. The size of CM was determined using laser light scattering, and CM proteins were separated, digested, and identified using data-independent acquisition (DIA) and data-dependent acquisition (DDA)-based proteomics approaches. According to clustering and principal component analysis, protein profiles identified using DIA were similar to those identified using the DDA approach. Significant differences in the abundance of 115 proteins during the lactation cycle were identified using the DIA approach. Developmental changes in the CM proteome corresponding to lactation stages were revealed: levels of lecithin cholesterol acyltransferase, folate receptor α, and prominin 2 increased from 1 to 240 d, whereas levels of growth/differentiation factor 8, peptidoglycan-recognition protein, and 45 kDa calcium-binding protein decreased in the same period. In addition, lipoprotein lipase, glycoprotein IIIb, and α-lactalbumin levels increased from 1 to 90 d and then decreased to 240 d, which is consistent with the change in CM size. Protein-protein interaction analysis showed that fibronectin, albumin, and apolipoprotein E interacted more with other proteins at the central node. These findings indicate that changes in the CM proteome during lactation could be related to requirements of newborn development, as well as mammary gland development, and may thus contribute to elucidating the physical and chemical properties of CM.
Collapse
Affiliation(s)
- Xueheng Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Zhongna Yu
- Haidu College, Qingdao Agricultural University, Laiyang 265200, Shandong, China
| | - Chuozi Liang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Shubin Xie
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Jing Wen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Hexiang Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China.
| |
Collapse
|
3
|
Aglago EK, Mayén AL, Knaze V, Freisling H, Fedirko V, Hughes DJ, Jiao L, Eriksen AK, Tjønneland A, Boutron-Ruault MC, Rothwell JA, Severi G, Kaaks R, Katzke V, Schulze MB, Birukov A, Palli D, Sieri S, Santucci de Magistris M, Tumino R, Ricceri F, Bueno-de-Mesquita B, Derksen JWG, Skeie G, Gram IT, Sandanger T, Quirós JR, Luján-Barroso L, Sánchez MJ, Amiano P, Chirlaque MD, Gurrea AB, Johansson I, Manjer J, Perez-Cornago A, Weiderpass E, Gunter MJ, Heath AK, Schalkwijk CG, Jenab M. Dietary Advanced Glycation End-Products and Colorectal Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Nutrients 2021; 13:3132. [PMID: 34579010 PMCID: PMC8470201 DOI: 10.3390/nu13093132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Dietary advanced glycation end-products (dAGEs) have been hypothesized to be associated with a higher risk of colorectal cancer (CRC) by promoting inflammation, metabolic dysfunction, and oxidative stress in the colonic epithelium. However, evidence from prospective cohort studies is scarce and inconclusive. We evaluated CRC risk associated with the intake of dAGEs in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Dietary intakes of three major dAGEs: Nε-carboxy-methyllysine (CML), Nε-carboxyethyllysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were estimated in 450,111 participants (median follow-up = 13 years, with 6162 CRC cases) by matching to a detailed published European food composition database. Hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations of dAGEs with CRC were computed using multivariable-adjusted Cox regression models. Inverse CRC risk associations were observed for CML (HR comparing extreme quintiles: HRQ5vs.Q1 = 0.92, 95% CI = 0.85-1.00) and MG-H1 (HRQ5vs.Q1 = 0.92, 95% CI = 0.85-1.00), but not for CEL (HRQ5vs.Q1 = 0.97, 95% CI = 0.89-1.05). The associations did not differ by sex or anatomical location of the tumor. Contrary to the initial hypothesis, our findings suggest an inverse association between dAGEs and CRC risk. More research is required to verify these findings and better differentiate the role of dAGEs from that of endogenously produced AGEs and their precursor compounds in CRC development.
Collapse
Affiliation(s)
- Elom K. Aglago
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| | - Viktoria Knaze
- Early Detection, Prevention, and Infections Branch, International Agency for Research on Cancer (IARC), 69372 Lyon, France;
| | - Heinz Freisling
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| | - Veronika Fedirko
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - David J. Hughes
- Cancer Biology and Therapeutics Group (CBT), Conway Institute, School of Biomolecular and Biomedical Science (SBBS), University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | | | - Anne Tjønneland
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (A.K.E.); (A.T.)
| | - Marie-Christine Boutron-Ruault
- CESP, Faculté de Médecine—Université Paris-Saclay, UVSQ, INSERM, 94805 Villejuif, France; (M.-C.B.-R.); (J.A.R.); (G.S.)
- Gustave Roussy, 114, Rue Édouard-Vaillant, CEDEX, 94805 Villejuif, France
| | - Joseph A. Rothwell
- CESP, Faculté de Médecine—Université Paris-Saclay, UVSQ, INSERM, 94805 Villejuif, France; (M.-C.B.-R.); (J.A.R.); (G.S.)
- Gustave Roussy, 114, Rue Édouard-Vaillant, CEDEX, 94805 Villejuif, France
| | - Gianluca Severi
- CESP, Faculté de Médecine—Université Paris-Saclay, UVSQ, INSERM, 94805 Villejuif, France; (M.-C.B.-R.); (J.A.R.); (G.S.)
- Gustave Roussy, 114, Rue Édouard-Vaillant, CEDEX, 94805 Villejuif, France
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, 50121 Florence, Italy
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (R.K.); (V.K.)
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (R.K.); (V.K.)
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (M.B.S.); (A.B.)
- Institute of Nutrition Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Anna Birukov
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (M.B.S.); (A.B.)
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy;
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy;
| | | | - Rosario Tumino
- Hyblean Association for Epidemiological Research AIRE-ONLUS, 97100 Ragusa, Italy;
| | - Fulvio Ricceri
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy;
- Unit of Epidemiology, Regional Health Service ASL TO3, Via Sabaudia 164, 10095 Grugliasco, Italy
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Jeroen W. G. Derksen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Guri Skeie
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway; (G.S.); (I.T.G.); (T.S.)
| | - Inger Torhild Gram
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway; (G.S.); (I.T.G.); (T.S.)
| | - Torkjel Sandanger
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway; (G.S.); (I.T.G.); (T.S.)
| | | | - Leila Luján-Barroso
- Unit of Nutrition and Cancer, Catalan Institute of Oncology—ICO; and Nutrition and Cancer Group; Epidemiology, Public Health, Cancer Prevention and Palliative Care Program, Bellvitge Biomedical Research Institute—IDIBELL, L’Hospitalet de Llobregat, Av. Granvia 199-203, 08908 Barcelona, Spain;
| | - Maria-Jose Sánchez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (M.-J.S.); (P.A.); (M.-D.C.); (A.B.G.)
- Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18071 Granada, Spain
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (M.-J.S.); (P.A.); (M.-D.C.); (A.B.G.)
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, 20014 Donostia-San Sebastian, Spain
| | - María-Dolores Chirlaque
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (M.-J.S.); (P.A.); (M.-D.C.); (A.B.G.)
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia University, 30003 Murcia, Spain
| | - Aurelio Barricarte Gurrea
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; (M.-J.S.); (P.A.); (M.-D.C.); (A.B.G.)
- Navarra Public Health Institute, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ingegerd Johansson
- Department of Radiation Sciences, Oncology, Umeå University, 907 36 Umeå, Sweden;
| | - Jonas Manjer
- Department of Clinical Sciences, Malmö, Lund University, 221 00 Lund, Sweden;
- Division of Surgery, Malmö, Lund University, 221 00 Lund, Sweden
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK;
| | - Elisabete Weiderpass
- Office of the Director, International Agency for Research on Cancer (IARC), 69372 Lyon, France;
| | - Marc J. Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| | - Alicia K. Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK;
| | - Casper G. Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, 6229 HX Maastrich, The Netherlands;
| | - Mazda Jenab
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC), 69372 Lyon, France; (E.K.A.); (A.-L.M.); (H.F.); (M.J.G.)
| |
Collapse
|