1
|
Zhao Z, Wang J, Li C, Zhang Y, Sun X, Ma T, Ge Q. Effects of Seven Sterilization Methods on the Functional Characteristics and Color of Yan 73 ( Vitis vinifera) Grape Juice. Foods 2023; 12:3722. [PMID: 37893615 PMCID: PMC10606831 DOI: 10.3390/foods12203722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Yan 73 (Vitis vinifera) is a dyed grape variety cultivated in China. Currently, most studies have focused on the mechanism of anthocyanins or the impact of anthocyanins as auxiliary color varieties on wine color. There is little research on its direct use or direct processing of products such as juice. In order to investigate the effects of different processing methods on the juice of Yan 73 grapes, the physicochemical and functional properties, as well as the sensory indexes of the juice, were analyzed by using thermal pasteurization (TP), thermosonication (TS), TS combined with nisin (TSN), TS combined with ε-Polylysine (TSε), irradiation (IR), and high hydrostatic pressure (HHP). The physicochemical indexes, functional properties, and sensory indexes of Smoke 73 grape juice were determined and analyzed. The results of the study showed that among the seven sterilization methods, total polyphenol content (TPC) in juice was significantly increased in all treatments except HHP. TPC was the highest in TP (3773.33 mg GAE/L). Total anthocyanin content (TAC) was increased except IR5, and TSN (1202.67 mg/L) had the highest TAC. In terms of color, TP (a* = 36.57, b* = 19.70, L* = 14.81, C* = 41.55, h° = 28.30, ΔE = 5.9) promotes the dissolution of anthocyanins because of high temperatures, which basically improves all the color indicators of grape juice and makes the color of grape juice more vivid. After HHP treatment, the color (ΔE = 1.72) and aroma indicators are closer to the grape juice itself. The Entropy weight-TOPSIS, CRITIC-Topsis, and PCA integrated quality evaluation models showed that all selected TP as the best integrated quality.
Collapse
Affiliation(s)
- Zixian Zhao
- Quality Standards and Testing Institute of Agricultural Technology, Yinchuan 750002, China; (Z.Z.); (C.L.)
- College of Enology, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.Z.); (X.S.)
| | - Jiaqi Wang
- College of Enology, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.Z.); (X.S.)
| | - Caihong Li
- Quality Standards and Testing Institute of Agricultural Technology, Yinchuan 750002, China; (Z.Z.); (C.L.)
| | - Yuanke Zhang
- College of Enology, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.Z.); (X.S.)
| | - Xiangyu Sun
- College of Enology, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.Z.); (X.S.)
| | - Tingting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qian Ge
- Quality Standards and Testing Institute of Agricultural Technology, Yinchuan 750002, China; (Z.Z.); (C.L.)
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Khan F, Singh P, Joshi AS, Tabassum N, Jeong GJ, Bamunuarachchi NI, Mijakovic I, Kim YM. Multiple potential strategies for the application of nisin and derivatives. Crit Rev Microbiol 2023; 49:628-657. [PMID: 35997756 DOI: 10.1080/1040841x.2022.2112650] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 12/22/2022]
Abstract
Nisin is a naturally occurring bioactive small peptide produced by Lactococcus lactis subsp. lactis and belongs to the Type A (I) lantibiotics. Due to its potent antimicrobial activity, it has been broadly employed to preserve various food materials as well as to combat a variety of microbial pathogens. The present review discusses the antimicrobial properties of nisin and different types of their derivatives employed to treat microbial pathogens with a detailed underlying mechanism of action. Several alternative strategies such as combination, conjugation, and nanoformulations have been discussed in order to address several issues such as rapid degradation, instability, and reduced activity due to the various environmental factors that arise in the applications of nisin. Furthermore, the evolutionary relationship of many nisin genes from different nisin-producing bacterial species has been investigated. A detailed description of the natural and bioengineered nisin variants, as well as the underlying action mechanisms, has also been provided. The chemistry used to apply nisin in conjugation with natural or synthetic compounds as a synergetic mode of antimicrobial action has also been thoroughly discussed. The current review will be useful in learning about recent and past research that has been performed on nisin and its derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Abhayraj S Joshi
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Ivan Mijakovic
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
3
|
Beitia E, Gkogka E, Chanos P, Hertel C, Heinz V, Valdramidis V, Aganovic K. Microbial decontamination assisted by ultrasound-based processing technologies in food and model systems: A review. Compr Rev Food Sci Food Saf 2023; 22:2802-2849. [PMID: 37184058 DOI: 10.1111/1541-4337.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Ultrasound (US) technology is recognized as one of the emerging technologies that arise from the current trends for improving nutritional and organoleptic properties while providing food safety. However, when applying the US alone, higher power and longer treatment times than conventional thermal treatments are needed to achieve a comparable level of microbial inactivation. This results in risks, damaging food products' composition, structure, or sensory properties, and can lead to higher processing costs. Therefore, the US has often been investigated in combination with other approaches, like heating at mild temperatures and/or treatments at elevated pressure, use of antimicrobial substances, or other emerging technologies (e.g., high-pressure processing, pulsed electric fields, nonthermal plasma, or microwaves). A combination of US with different approaches has been reported to be less energy and time consuming. This manuscript aims to provide a broad review of the microbial inactivation efficacy of US technology in different food matrices and model systems. In particular, emphasis is given to the US in combination with the two most industrially viable physical processes, that is, heating at mild temperatures and/or treatments at elevated pressure, resulting in techniques known as thermosonication, manosonication, and manothermosonication. The available literature is reviewed, and critically discussed, and potential research gaps are identified. Additionally, discussions on the US's inactivation mechanisms and lethal effects are included. Finally, mathematical modeling approaches of microbial inactivation kinetics due to US-based processing technologies are also outlined. Overall, this review focuses only on the uses of the US and its combinations with other processes relevant to microbial food decontamination.
Collapse
Affiliation(s)
- Enrique Beitia
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis Chanos
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Christian Hertel
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Volker Heinz
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Vasilis Valdramidis
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Kemal Aganovic
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| |
Collapse
|
4
|
Gómez-Llorente H, Fernández-Segovia I, Pérez-Esteve É, Ribes S, Rivas A, Ruiz-Rico M, Barat JM. Immobilization of Natural Antimicrobial Compounds on Food-Grade Supports as a New Strategy to Preserve Fruit-Derived Foods. Foods 2023; 12:foods12102060. [PMID: 37238878 DOI: 10.3390/foods12102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The use of natural antimicrobials in the food industry is being proposed as an eco-friendly postharvest technology to preserve fruit-derived foods. In this context, this systematic review aims to describe and discuss the application of naturally occurring antimicrobial compounds in the processing of fruit-derived foods by the PRISMA methodology. In a first step, the use of free natural antimicrobials was investigated as an approach to identify the main families of bioactive compounds employed as food preservatives and the current limitations of this dosage form. Then, the use of immobilized antimicrobials, in an innovative dosage form, was studied by distinguishing two main applications: addition to the food matrix as preservatives or use during processing as technological aids. Having identified the different examples of the immobilization of natural antimicrobial compounds on food-grade supports, the mechanisms of immobilization were studied in detail to provide synthesis and characterization guidelines for future developments. Finally, the contribution of this new technology to decarbonization and energy efficiency of the fruit-derived processing sector and circular economy is discussed in this review.
Collapse
Affiliation(s)
- Héctor Gómez-Llorente
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Isabel Fernández-Segovia
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Édgar Pérez-Esteve
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Susana Ribes
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alejandro Rivas
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - María Ruiz-Rico
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - José M Barat
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
5
|
Abdulstar AR, Altemimi AB, Al-Hilphy AR. Exploring the Power of Thermosonication: A Comprehensive Review of Its Applications and Impact in the Food Industry. Foods 2023; 12:foods12071459. [PMID: 37048278 PMCID: PMC10094072 DOI: 10.3390/foods12071459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Thermosonication (TS) has been identified as a smart remedy for the shortcomings of heat treatment, which typically requires prolonged exposure to high temperatures. This technique combines moderate heat treatment with acoustic energy to eliminate harmful microorganisms and enzymes in food products. Unlike conventional heat treatment, thermosonication utilizes short holding times, allowing for the preservation of food products’ phytochemical compounds and sensory characteristics. The benefits and challenges of this emerging technology, such as equipment cost, limited availability of data, inconsistent results, high energy consumption, and scale-up challenges, have been assessed, and the design process for using ultrasound in combination with mild thermal treatment has been discussed. TS has proven to be a promising technique for eliminating microorganisms and enzymes without compromising the nutritional or sensory quality of food products. Utilizing natural antimicrobial agents such as ascorbic acid, Nisin, and ε-polylysine (ε-PL) in combination with thermosonication is a promising approach to enhancing the safety and shelf life of food products. Further research is required to enhance the utilization of natural antimicrobial agents and to acquire a more comprehensive comprehension of their impact on the safety and quality of food products.
Collapse
|
6
|
Lan T, Lv X, Zhao Q, Lei Y, Gao C, Yuan Q, Sun X, Liu X, Ma T. Optimization of strains for fermentation of kiwifruit juice and effects of mono- and mixed culture fermentation on its sensory and aroma profiles. Food Chem X 2023; 17:100595. [PMID: 36824148 PMCID: PMC9941363 DOI: 10.1016/j.fochx.2023.100595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/07/2023] Open
Abstract
In this study, a quality evaluation model of fermented kiwifruit juice (KJ) based on strain growth characteristics, sensory quality and functional characteristics was established by PCA, and the effects of mono- and mixed culture fermentation on the sensory and aroma profiles of KJ were comparatively studied. Experiments determined that L. brevis (LB) was the optimal strain for monoculture fermentation, and L. plantarum (LP2):LB = 1:2 was the optimum ratio for mixed fermentation. The results showed that lactic acid bacteria (LAB) fermentation significantly reduced the pH, soluble solid content and lightness, and improved its functional characteristics and viscosity. Mixed culture fermentation was superior to monoculture fermentation in terms of colony counts, sensory quality and viscosity. In general, after LAB fermentation, the concentrations of esters, ketones, alcohols and terpenoids in KJ increased significantly, while the concentrations of aldehydes decreased significantly. The production of esters and terpenoids was more strongly promoted by monoculture fermentation, while mixed culture fermentation promoted the production of more ketones and alcohols. 2,5-octanedione and 1-octen-3-ol could be the characteristic aroma compounds of mixed fermented KJ.
Collapse
Affiliation(s)
- Tian Lan
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China
| | - Xinran Lv
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China
| | - Qinyu Zhao
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China
| | - Yushan Lei
- Shaanxi Rural Science and Technology Development Center, Xi’an 710054, China,Shaanxi Bairui Kiwifruit Research Co, Ltd, Xi’an 710054, China
| | - Chenxu Gao
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China
| | - Quyu Yuan
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China
| | - Xiangyu Sun
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China,Corresponding authors at: College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China (T. Ma).
| | - Tingting Ma
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China,Shaanxi Bairui Kiwifruit Research Co, Ltd, Xi’an 710054, China,Corresponding authors at: College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China (T. Ma).
| |
Collapse
|
7
|
Sun X, Zhao Q, Yuan Q, Gao C, Ge Q, Li C, Liu X, Ma T. Thermosonication combined with ε-polylysine (TSε): A novel technology to control the microbial population and significantly improve the overall quality attributes of orange juice. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Cano-Lamadrid M, Artés-Hernández F. Thermal and Non-Thermal Treatments to Preserve and Encourage Bioactive Compounds in Fruit- and Vegetable-Based Products. Foods 2022; 11:3400. [PMID: 36360013 PMCID: PMC9656200 DOI: 10.3390/foods11213400] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 10/25/2022] [Indexed: 10/15/2023] Open
Abstract
Fruit- and vegetable-based products (F&Vs) have been conventionally processed using thermal techniques such as pasteurization, scalding, or/and drying, ensuring microbial safety and/or enzyme deactivation [...].
Collapse
Affiliation(s)
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering, Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Murcia, Spain
| |
Collapse
|
9
|
Non-Thermal Technologies Combined with Antimicrobial Peptides as Methods for Microbial Inactivation: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Non-thermal technologies allow for the nutritional and sensory properties of foods to be preserved, something that consumers demand. Combining their use with antimicrobial peptides (AMPs) provides potential methods for food preservation that could have advantages over the use of chemical preservatives and thermal technologies. The aim of this review was to discuss the advances in the application of non-thermal technologies in combination with AMPs as a method for microbial inactivation. Published papers reporting studies on the combined use of power ultrasound (US), pulsed electrical fields (PEF), and high hydrostatic pressure (HHP) with AMPs were reviewed. All three technologies show a possibility of being combined with AMPs, generally demonstrating higher efficiency than the application of US, PEF, HHP, and AMPs separately. The most studied AMP used in combination with the three technologies was nisin, probably due to the fact that it is already officially regulated. However, the combination of these non-thermal technologies with other AMPs also shows promising results for microbial inactivation, as does the combination of AMPs with other novel non-thermal technologies. The effectiveness of the combined treatment depends on several factors; in particular, the characteristics of the food matrix, the conditions of the non-thermal treatment, and the conditions of AMP application.
Collapse
|