1
|
Lenzuni M, Converti A, Casazza AA. From laboratory- to industrial-scale plants: Future of anaerobic digestion of olive mill solid wastes. BIORESOURCE TECHNOLOGY 2024; 394:130317. [PMID: 38218408 DOI: 10.1016/j.biortech.2024.130317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
In this review, the main properties of olive mill solid waste, the primary by-product of olive oil production, and its feasibility as a feedstock for anaerobic digesters operating at laboratory-, pilot- and industrial-scales are discussed in detail. Nutrient addition and thermal pretreatments were found to have the potential to address the challenges arising from the high carbon-to-nitrogen ratio, the low pH, and the high concentration of phenolic compounds. Furthermore, anaerobic co-digestion with different organic feedstocks has been identified as one of the most promising options to solve the aforementioned problems and the seasonality nature of olive waste, while improving the efficiency of anaerobic treatment plants that operate throughout the whole year. The insights generated from this study show co-digestion with wastes from animal farming to be the most environmentally and economically sustainable method for improving anaerobic digestion processes with olive mill solid waste.
Collapse
Affiliation(s)
- Martina Lenzuni
- Department of Civil, Chemical, and Environmental Engineering, University of Genoa, Italy; National Research Centre for Agricultural Technologies (CN AgriTech), Naples, Italy
| | - Attilio Converti
- Department of Civil, Chemical, and Environmental Engineering, University of Genoa, Italy; National Research Centre for Agricultural Technologies (CN AgriTech), Naples, Italy.
| | | |
Collapse
|
2
|
Yun S, Xing T, Wang Y, Chen R, Han F, Zhang C, Zou M. Mineral residue accelerant-enhanced anaerobic digestion of cow manure: An evaluation system of comprehensive performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159840. [PMID: 36369680 DOI: 10.1016/j.scitotenv.2022.159840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion (AD) is an efficient technology for treating biowaste and generating biogas. A reasonable evaluation of AD performance is crucial to its development. Herein, a comprehensive evaluation system covering five dimensions (energy output, process stability, degradation efficiency, digestate fertility, and digestate safety) was established to assess AD performance. Each dimension in the evaluation system was assigned a specific indicator defined by a threshold or range. Additionally, the proposed evaluation system was applied to assess a case study of batch-mode mesophilic AD that employed three industrial waste residues as mineral accelerants (nickel‑iron slag, steel slag, and fly ash). The mineral accelerants enhanced the energy output (methane yield by 66.55 %-87.54 %) and the feedstock degradation (chemical oxygen demand removal ratio by 11.23 %-32.42 %). The digestates also retained promising safety (heavy metal contents of 190-1260 mg/kg) and fertility (total nutrient contents of 3.71 %-4.69 %). The evaluation system reasonably appraised the comprehensive performance of accelerant-enhanced AD systems with cow manure. This work provides a reliable methodology for evaluating and comparing the performance of different novel accelerants and can be applied to evaluate the comprehensive performance of large-scale biogas projects with cow manure.
Collapse
Affiliation(s)
- Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China; Qinghai Building and Materials Research Academy Co., Ltd, The Key Lab of Plateau Building and Eco-community in Qinghai, Xining, Qinghai 810000, China.
| | - Tian Xing
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Rong Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Feng Han
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Chen Zhang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Ming Zou
- Research Institute, JISCO Hongxing Iron and Steel Co., Ltd., Jiayuguan, Gansu 735100, China
| |
Collapse
|
3
|
Stempfle S, Roselli L, Carlucci D, Leone A, de Gennaro BC, Giannoccaro G. Toward the circular economy into the olive oil supply chain: A case study analysis of a vertically integrated firm. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1005604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While the paradigm of circular economy (CE) and the processes of socio-technical transition have been broadly investigated at the theoretical level, understanding how the transition toward circular models can be implemented in practice is still limited. This contribution aims to provide in-depth and evidence-based insights on an emerging pathway for the operability of CE into the olive oil supply chain. A case study from the Apulia region (the leading olive oil producing area in Italy) is presented to show how an existing business model can be transformed into a circular one, and to what extent it can be replicated. The study focuses on a vertically integrated firm, in which a new industrial process has been introduced to manage olive pomace, which is one of the most important by-products obtained from olive oil extraction. The empirical analysis is built on the Circular Business Model Canvas (CBMC), which is conceived as a suitable theoretical and methodological tool to speed up the transition process toward CE at a micro-economic level. This analytical framework allows us to identify the interplaying elements that the firm combines to capture, create, and deliver value, as well as the relationships with the broader economic system. Particular attention is paid to two distinctive components of CBMC: material loops and adoption factors. Also, internal and external factors affecting the adoption of the new circular business model have been discussed by separating drivers and barriers of the transition process.
Collapse
|
4
|
Calvano CD, Tamborrino A. Valorization of Olive By-Products: Innovative Strategies for Their Production, Treatment and Characterization. Foods 2022; 11:foods11060768. [PMID: 35327197 PMCID: PMC8947182 DOI: 10.3390/foods11060768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 01/21/2023] Open
Affiliation(s)
- Cosima D. Calvano
- Inter-Department Center SMART, Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- Correspondence: (C.D.C.); (A.T.)
| | - Antonia Tamborrino
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Correspondence: (C.D.C.); (A.T.)
| |
Collapse
|
5
|
Evolution of the Olive Oil Industry along the Entire Production Chain and Related Waste Management. ENERGIES 2022. [DOI: 10.3390/en15020465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The production of olive oil involves the sustainable management of the waste produced along the entire production chain. This review examines the developments regarding cultivation techniques, production technologies, and waste management, highlighting the goals to be achieved and the most reasonable prospects. The results show that cultivation and production technology have evolved to an almost final solution to meet economic feasibility, keeping the oil’s high quality. Continuous horizontal decanters will coexist with traditional mills in many countries with old olive oil production and consumption traditions. High-quality products have conquered markets, especially in the wealthiest countries. At the same time, the exploitation of dried pomace by solvent extraction is increasingly an obsolete practice. However, waste management is still looking for one or a few reasonable solutions that meet modern society’s constraints. The enhancement of some experienced technologies and the full-scale application of emerging technologies and strategies should solve this problem in the short–medium term. A short discussion is reported on the possibility of unifying the nature and the quality of the waste, whatever the olive oil production method is. Furthermore, modern thermochemical treatment for solid wet organic waste disposal is examined and discussed.
Collapse
|