1
|
Yang L, Li H, Wu H, Liu S, He Z. Effect of staphylococci fermentation and their synergistic Lactobacillus on the physicochemical characteristics and nonvolatile metabolites of Chinese bacon. Meat Sci 2024; 212:109461. [PMID: 38394856 DOI: 10.1016/j.meatsci.2024.109461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The impacts of Staphylococcus cohnii, S. saprophyticus and their synergistic Lactobacillus plantarum on the quality and flavor of Chinese bacon were investigated by monitoring the physicochemical characteristics and characterizing metabolites with non-targeted metabolomics. Results showed that S. cohnii could increase the tenderness and decrease the oxidation of muscle, while S. saprophyticus stabilized the springiness and increased the proteolysis. The metabolites produced by the co-fermentation of S. cohnii and S. saprophyticus showed a higher hierarchy, then exhibited the highest hierarchy in synergy with L. plantarum. The promising flavor may be related to the arginine biosynthesis, nicotinic acid and nicotinamide metabolism, and pyrimidine metabolism pathways. Staphylococcus contributed to flavor by promoting the accumulation of di- and tripeptides and activating the amino acid metabolic pathway through arginine metabolism. These findings provide thoughts for understanding the fermentation mechanism of Staphylococcus and the targeted modulation of the flavor of Chinese bacon.
Collapse
Affiliation(s)
- Li Yang
- College of Food Science, Southwest University, No .2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Hongjun Li
- College of Food Science, Southwest University, No .2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Engineering Research Center of Regional Food, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Han Wu
- College of Food Science, Southwest University, No .2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Shuyun Liu
- College of Food Science, Southwest University, No .2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Zhifei He
- College of Food Science, Southwest University, No .2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Engineering Research Center of Regional Food, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China.
| |
Collapse
|
2
|
Mao J, Wang X, Chen H, Zhao Z, Liu D, Zhang Y, Nie X. The Contribution of Microorganisms to the Quality and Flavor Formation of Chinese Traditional Fermented Meat and Fish Products. Foods 2024; 13:608. [PMID: 38397585 PMCID: PMC10888149 DOI: 10.3390/foods13040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Guizhou sour meat and sour fish, Chaoshan fish sauce, Sichuan sausage and bacon, Cantonese sausage, Jinhua ham, and Xinjiang air-dried beef are eight representatives of Chinese traditional fermented meat and fish products (FMFPs), which are favored by Chinese consumers due to their high nutritional value and quality. The quality of the spontaneously fermented Chinese traditional FMFP is closely correlated with microorganisms. Moreover, the dominant microorganisms are significantly different due to regional differences. The effects of microorganisms on the texture, color, flavor, nutrition, functional properties, and safety of Chinese traditional FMFPs have not been not fully described. Additionally, metabolic pathways for flavor formation of Chinese traditional FMFPs have not well been summarized. This article describes the seven characteristic Chinese traditional FMFPs and correlated dominant microorganisms in different regions of China. The effects of microorganisms on the texture, color, and flavor of Chinese traditional FMFPs are discussed. Furthermore, the metabolic pathways of microbial regulation of flavor formation in Chinese traditional FMFPs are proposed. This work provides a theoretical basis for improvement of Chinese traditional FMFPs by inoculating functional microorganisms isolated from Chinese traditional fermented foods.
Collapse
Affiliation(s)
- Jingjing Mao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinyi Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Hongfan Chen
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Zhiping Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xin Nie
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
3
|
García-López JD, Barbieri F, Baños A, Madero JMG, Gardini F, Montanari C, Tabanelli G. Use of two autochthonous bacteriocinogenic strains as starter cultures in the production of salchichónes, a type of Spanish fermented sausages. Curr Res Food Sci 2023; 7:100615. [PMID: 37881335 PMCID: PMC10594565 DOI: 10.1016/j.crfs.2023.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
In this work, two autochthonous LAB strains (Lactiplantibacillus paraplantarum BPF2 and Pediococcus acidilactici ST6), isolated from spontaneously fermented sausages produced in Spain, were tested to produce Spanish fermented sausages (salchichón) in pilot plants, due to their promising technological and anti-listerial activity. These products were compared with a sample obtained with a commercial starter (RAP) and a spontaneously fermented control sample. Physico-chemical parameters, microbial counts, metagenomic analysis, biogenic amines content and organoleptic profile of the obtained samples were studied to assess the performances of the native starters. In fact, traditional and artisanal products obtained through spontaneous fermentations can represent an important biodiversity reservoir of strains to be exploited as new potential starter cultures, to improve the safety, quality and local differentiation of traditional products. The data underlined that ST6 strain resulted in a final lower percentage if compared with the other LAB used as starter cultures. The use of starters reduced the BA concentration observed in the sausages obtained with spontaneous fermentation and the BPF2 and ST6 strains were able to decrease the level of products rancidity. Moreover, a challenge test against L. monocytogenes were performed. The data confirmed the effectiveness in the inhibition of L. monocytogenes by the two bacteriocinogenic strains tested, with respect to RAP and control samples, highlighting their ability to produce bacteriocins in real food systems. This work demonstrated the promising application in meat industry of these autochthonous strains as starter cultures to improve sensory differentiation and recognizability of typical fermented sausages.
Collapse
Affiliation(s)
| | - Federica Barbieri
- Department of Agricultural and Food Sciences, University of Bologna, 47521, Cesena, Italy
| | - Alberto Baños
- Department of Microbiology, DOMCA S.A.U, 18620, Alhendín, Spain
| | | | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, 47521, Cesena, Italy
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, 47521, Cesena, Italy
| | - Giulia Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, 47521, Cesena, Italy
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy
| |
Collapse
|
4
|
Pellegrini M, Barbieri F, Montanari C, Iacumin L, Bernardi C, Gardini F, Comi G. Microbial Spoilage of Traditional Goose Sausages Produced in a Northern Region of Italy. Microorganisms 2023; 11:1942. [PMID: 37630502 PMCID: PMC10459116 DOI: 10.3390/microorganisms11081942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Recently, during the ripening of goose sausage, a defect consisting of ammonia and vinegar smell was noticed. The producer of the craft facility, located in Lombardia, a Northern region of Italy, asked us to identify the cause of that defect. Therefore, this study aimed to identify the potential responsible agents for the spoilage of this lot of goose sausages. Spoilage was first detected by sensory analysis using the "needle probing" technique; however, the spoiled sausages were not marketable due to the high ammonia and vinegar smell. The added starter culture did not limit or inhibit the spoilage microorganisms, which were represented by Levilactobacillus brevis, the predominant species, and by Enterococcus faecalis and E. faecium. These microorganisms grew during ripening and produced a large amount of biogenic amines, which could represent a risk for consumers. Furthermore, Lev. brevis, being a heterofermentative lactic acid bacteria (LAB), also produced ethanol, acetic acid, and a variation in the sausage colour. The production of biogenic amines was confirmed in vitro. Furthermore, as observed in a previous study, the second cause of spoilage can be attributed to moulds which grew during ripening; both the isolated strains, Penicillium nalgiovense, added as a starter culture, and P. lanosocoeruleum, present as an environmental contaminant, grew between the meat and casing, producing a large amount of total volatile nitrogen, responsible for the ammonia smell perceived in the ripening area and in the sausages. This is the first description of Levilactobacillus brevis predominance in spoiled goose sausage.
Collapse
Affiliation(s)
- Michela Pellegrini
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (M.P.); (L.I.)
| | - Federica Barbieri
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (F.G.)
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (F.G.)
| | - Lucilla Iacumin
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (M.P.); (L.I.)
| | - Cristian Bernardi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 20122 Lodi, Italy;
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (F.G.)
| | - Giuseppe Comi
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (M.P.); (L.I.)
| |
Collapse
|
5
|
Van der Veken D, Poortmans M, Dewulf L, Fraeye I, Michiels C, Leroy F. Challenge tests reveal limited outgrowth of proteolytic Clostridium botulinum during the production of nitrate- and nitrite-free fermented sausages. Meat Sci 2023; 200:109158. [PMID: 36905786 DOI: 10.1016/j.meatsci.2023.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/15/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Nitrate and nitrite salts perform a versatile role in fermented meats, including the inhibition of food pathogens (in particular proteolytic group I Clostridium botulinum). Despite the increasing interest in clean-label products, little is known about the behaviour of this pathogen in response to the removal of chemical preservatives from fermented meat formulations. Therefore, challenge tests with a cocktail of nontoxigenic group I C. botulinum strains were performed to produce nitrate/nitrite-free fermented sausages under different acidification conditions and starter culture formulations, including the use of an anticlostridial Mammaliicoccus sciuri strain. Results showed limited outgrowth of C. botulinum, even in the absence of acidification. The anticlostridial starter culture did not lead to an additional inhibitory effect. The selective plating procedure adopted within this study proofed robust to follow germination and growth of C. botulinum, inhibiting common fermentative meat microbiota. The challenge tests constitute a suitable tool to assess the behaviour of this food pathogen within fermented meats upon nitrate- and nitrite omission.
Collapse
Affiliation(s)
- David Van der Veken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marijke Poortmans
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Lore Dewulf
- Meat Technology & Science of Protein-Rich Foods, Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Technology Campus Ghent, Ghent, Belgium
| | - Ilse Fraeye
- Meat Technology & Science of Protein-Rich Foods, Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven Technology Campus Ghent, Ghent, Belgium
| | - Chris Michiels
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
6
|
Tian J, Yang X, Zhang K, Zhao Y, Cheng F, Jin Y. Influence of Lactobacillus helveticus ZF22 and TR1-1-3 strains on the aromatic flavor of fermented sausages. Front Nutr 2023; 9:1058109. [PMID: 36698479 PMCID: PMC9868738 DOI: 10.3389/fnut.2022.1058109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
In this study, five strains isolated from traditional Inner Mongolian air-dried meat products were used, two Lactobacillus helveticus strains, ZF22 and TR1-1-3, with potent antibacterial activity, acid, salt, and nitrite tolerance, were selected for this study. Lactic acid bacteria (LAB) (Lactobacillus helveticus ZF22 and TR1-1-3) were inoculated into fermented sausages at 107 CFU/g and their volatiles were studied during fermentation and storage. Clustering heat map and principal component analysis (PCA) were used to identify differentiating flavor components in uninoculated and inoculated sausages. The results showed that 72 volatile flavor substances were identified during the fermentation of the fermented sausages and that inoculation with Lactobacillus helveticus ZF22 and TR1-1-3 increased the proportion of acids, ketones and alkanes. Moreover, the clustering heat map demonstrated that esters such as ethyl isobutyrate, ethyl acetate, and ethyl valerate were more abundant in TR1-1-3 and ZF22 than ZR. The PCA analysis showed that the volatile compounds of the three fermented sausages were distributed in separate quadrants, suggesting that the volatile compound compositions of the three fermented sausages differed significantly. Our findings suggest that inoculating fermented sausages with Lactobacillus helveticus TR1-1-3 and ZF22 can improve flavor by enhancing the type and amount of flavor compounds.
Collapse
Affiliation(s)
- Jianjun Tian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China,*Correspondence: Jianjun Tian,
| | - Xueqian Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Kaiping Zhang
- Department of Cooking & Food Processing, Inner Mongolia Business & Trade Vocational College, Hohhot, China
| | - Yanhong Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Feng Cheng
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
7
|
Jeong CH, Lee SH, Yoon Y, Choi HY, Kim HY. Identification of Optimal Fermentation Temperature for Dry-Fermented Sausage Using Strains Isolated from Korean Fermented Foods. Foods 2022; 12:foods12010137. [PMID: 36613352 PMCID: PMC9818867 DOI: 10.3390/foods12010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
This study aims at identifying the optimal fermentation temperature for dry-fermented sausage using strains isolated from Kimchi (GK1, Pediococcus pentosaceus-GK1; NK3, P. pentosaceus-NK3), Doenjang (D1, Debaryomyces hansenii-D1), and commercial fermented sausage (S6, spontaneously generated Penicillium nalgiovense-S6). The microbial population, pH, moisture content, color, thiobarbituric acid reactive substance (TBARS), volatile basic nitrogen (VBN), and electronic nose (E-nose) were analyzed to identify the optimal fermentation temperature. The dry-fermented sausages were inoculated with three types of starter cultures [CS (commercial starter culture), GD (GK1 + D1 + S6), and ND (NK3 + D1 + S6)]. The fermentation was performed for 3 days at 20 °C and 25 °C, and dried for 28 days. The Lactobacillus spp. plate count and TBARS showed significantly higher values in the 25 °C group than in the 20 °C group (p < 0.05). The Staphylococcus spp. plate count of GD and ND were significantly higher than CS group at all temperatures. On day 31, the moisture content and VBN values of all groups were less than 35 % and 20 mg%, respectively. According to E-nose, the highest amount of acetoin was detected at the GD group fermented at 25 °C. Thus, the optimal fermentation temperature is expected at 25 °C after using GD in the manufacturing of dry-fermented sausages.
Collapse
Affiliation(s)
- Chang-Hwan Jeong
- Department of Animal Resources Science, Kongju National University, Yesan-Gun 32439, Republic of Korea
| | - Sol-Hee Lee
- Department of Animal Resources Science, Kongju National University, Yesan-Gun 32439, Republic of Korea
| | - Yohan Yoon
- Department of Food and Nutrient, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Hyung-Youn Choi
- Food Standard Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju-Gun 55365, Republic of Korea
- Correspondence: (H.-Y.C.); (H.-Y.K.); Tel.: +82-63-219-9274 (H.-Y.C.); +82-41-330-1241 (H.-Y.K.); Fax: +82-63-219-9333 (H.-Y.C.); +82-41-330-1249 (H.-Y.K.)
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan-Gun 32439, Republic of Korea
- Correspondence: (H.-Y.C.); (H.-Y.K.); Tel.: +82-63-219-9274 (H.-Y.C.); +82-41-330-1241 (H.-Y.K.); Fax: +82-63-219-9333 (H.-Y.C.); +82-41-330-1249 (H.-Y.K.)
| |
Collapse
|
8
|
Effects of Starter Cultures and Type of Casings on the Microbial Features and Volatile Profile of Fermented Sausages. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the literature, the effect of the type of casing on fermented sausages is quite unexplored, while several studies are focused on the impact of starter cultures. Therefore, this paper studied the effect of three commercial starter cultures and two casings (natural or collagen) on Italian fermented sausages. Physico-chemical parameters (aw, pH, weight loss), microbiota, aroma profile and sensory analysis were evaluated. Results showed that collagen casings promoted a higher reduction of pH and weight loss. Concerning the microbiota, samples with natural casing had higher counts of lactic acid bacteria, while yeast proliferation was promoted in those with collagen. Regardless of the starters and casings applied, levels of enterococci and Enterobacteriaceae were low (≤2 log CFU/g). The aroma profile was significantly affected by casing: despite the starter applied, the presence of collagen casing favoured acid accumulation (mainly acetate and butanoate) and reduction of ketones. Sensory analysis highlighted significant differences only for odour, colour intensity and sourness. The differences observed suggest that collagen casings may provide a greater availability of oxygen. Overall, casings rather than starter cultures impact the microbial and sensorial features of fermented sausages.
Collapse
|
9
|
Păucean A, Kádár CB, Simon E, Vodnar DC, Ranga F, Rusu IE, Vișan VG, Socaci SA, Man S, Chiș MS, Pop A, Tanislav AE, Mureșan V. Freeze-Dried Powder of Fermented Chili Paste-New Approach to Cured Salami Production. Foods 2022; 11:3716. [PMID: 36429308 PMCID: PMC9689597 DOI: 10.3390/foods11223716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Fermented chili powders were obtained through the freeze-drying of fermented chili pastes and used as a condiment, acidifier, antioxidant, colorant, and microbial starter carrier in fermented salami production. Fermented chili powders were examined regarding carbohydrates, organic acids, vitamin C, phenolic compounds, carotenoids, and aroma profile. High concentrations of lactic (10.57-12.20%) and acetic acids (3.39-4.10%) were recorded. Vitamin C content was identified in the range of 398-1107 mg/100 g, with maximum values for C. annuum cv. Cayenne chili powder. Phenolic compounds showed values between 302-771 mg/100 g. Total carotenoid content was identified between 544-2462 µg/g, with high concentrations of capsanthin esters. Aroma profile analysis evidenced specific compounds (1-hexanol, 2-hexanol, hexenal, E-2-hexenal) with sensory importance and a more complex spectrum for Capsicum chinense cultivar. Plant-specific lactic acid bacteria showed dominance both in fermented chili paste, chili powder, and salami. Lactic and acetic acids from the fermented chili powder reduced the pH of the filling immediately, having a stabilizing effect on the meat. Nor molds or pathogens were identified in outer limits. Based on these results, fermented chili powders could be used as starter carriers in the production of fermented meat products for exceptional sensory properties and food safety management.
Collapse
Affiliation(s)
- Adriana Păucean
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Csaba Balázs Kádár
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Elemér Simon
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3–5 Calea Mănăstur, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3–5 Calea Mănăstur, 400372 Cluj-Napoca, Romania
| | - Floricuța Ranga
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3–5 Calea Mănăstur, 400372 Cluj-Napoca, Romania
| | - Iulian Eugen Rusu
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Vasile-Gheorghe Vișan
- Department of Fundamental Sciences, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Sonia-Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3–5 Calea Mănăstur, 400372 Cluj-Napoca, Romania
| | - Simona Man
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Maria Simona Chiș
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Anamaria Pop
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Anda E. Tanislav
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Vlad Mureșan
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Tabanelli G, Barbieri F, Soglia F, Magnani R, Gardini G, Petracci M, Gardini F, Montanari C. Safety and technological issues of dry fermented sausages produced without nitrate and nitrite. Food Res Int 2022; 160:111685. [DOI: 10.1016/j.foodres.2022.111685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
|
11
|
Khusro A, Aarti C. Metabolic heterogeneity and techno-functional attributes of fermented foods-associated coagulase-negative staphylococci. Food Microbiol 2022; 105:104028. [DOI: 10.1016/j.fm.2022.104028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 01/03/2023]
|
12
|
Unravelling microbial populations and volatile organic compounds of artisan fermented liver sausages manufactured in Central Italy. Food Res Int 2022; 154:111019. [DOI: 10.1016/j.foodres.2022.111019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 01/04/2023]
|