1
|
Serquiz AC, Barros Gomes JDADC, Farias NBDS, Mafra D, Pereira de Lima PM, de Oliveira Coutinho D, Ribeiro FPB, Rocha HADO, de Brito Alves JL. Protective Effects of Annona Atemoya Extracts on Inflammation, Oxidative Stress, and Renal Function in Cadmium-Induced Nephrotoxicity in Wistar Rats. Pharmaceuticals (Basel) 2024; 17:1393. [PMID: 39459032 PMCID: PMC11510283 DOI: 10.3390/ph17101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cadmium (Cd), a highly toxic heavy metal from agricultural activities, and its exposure can lead to impaired renal function by increasing reactive oxygen species. The atemoya fruit is known for its high phenolic and antioxidant compounds. This study aimed to evaluate the effects of atemoya extracts on renal function, oxidative stress parameters, and inflammatory biomarkers in a cadmium-induced nephrotoxicity model. METHODS Three aqueous extracts were prepared from different parts of the atemoya fruit: seeds, peel, and pulp. Twenty-five male Wistar rats were allocated into four groups: control, seed, peel, and pulp extracts at 2 g/kg for 25 days. All treatment groups administered intraperitoneal injections of cadmium chloride (CdCl2) (2 mg/kg) to induce renal damage. RESULTS The cadmium-treated groups showed decreased creatinine clearance, SOD, CAT, and GPx activities (p < 0.05) and increased serum levels of TNF-α and IL-6 compared to the control group (p < 0.05). The treatment with seed, peel, and pulp extracts increased creatinine clearance (p < 0.05), increased SOD, CAT, and GPx activities (p < 0.05), and reduced serum levels of TNF-α and IL-6 compared to the Cd group (p < 0.05). CONCLUSIONS This study supports the use of atemoya as a promising candidate for mitigating nephrotoxicity and highlights the importance of its antioxidant and anti-inflammatory properties in renal health.
Collapse
Affiliation(s)
- Alexandre Coelho Serquiz
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PS, Brazil; (A.C.S.); (P.M.P.d.L.); (D.d.O.C.); (F.P.B.R.)
| | - Joana de Angelis da Costa Barros Gomes
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Graduate Program of Biochemistry and Molecular Biology, Bioscience Center, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, RN, Brazil; (J.d.A.d.C.B.G.); (N.B.d.S.F.); (H.A.d.O.R.)
| | - Naisandra Bezerra da Silva Farias
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Graduate Program of Biochemistry and Molecular Biology, Bioscience Center, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, RN, Brazil; (J.d.A.d.C.B.G.); (N.B.d.S.F.); (H.A.d.O.R.)
| | - Denise Mafra
- Graduate Program in Biological Sciences—Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil;
| | - Pietra Maria Pereira de Lima
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PS, Brazil; (A.C.S.); (P.M.P.d.L.); (D.d.O.C.); (F.P.B.R.)
| | - Daniella de Oliveira Coutinho
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PS, Brazil; (A.C.S.); (P.M.P.d.L.); (D.d.O.C.); (F.P.B.R.)
| | - Fernanda Priscila Barbosa Ribeiro
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PS, Brazil; (A.C.S.); (P.M.P.d.L.); (D.d.O.C.); (F.P.B.R.)
| | - Hugo Alexandre de Oliveira Rocha
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Graduate Program of Biochemistry and Molecular Biology, Bioscience Center, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, RN, Brazil; (J.d.A.d.C.B.G.); (N.B.d.S.F.); (H.A.d.O.R.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PS, Brazil; (A.C.S.); (P.M.P.d.L.); (D.d.O.C.); (F.P.B.R.)
| |
Collapse
|
2
|
Yao Y, Hong Q, Ding S, Cui J, Li W, Zhang J, Sun Y, Yu Y, Yu M, Mi L, Wang Y, Jiang J, Hu Y. Meta-analysis of the effects of probiotics on hyperlipidemia. Curr Res Food Sci 2024; 9:100885. [PMID: 39469722 PMCID: PMC11513789 DOI: 10.1016/j.crfs.2024.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Background The potential role of probiotics in mitigating hyperlipidemia has garnered increasing evidence, yet the specific mechanisms warrant further investigation. Objective This study aimed to examine the alterations in short-chain fatty acids (SCFAs), a hypothesized lipid-lowering mechanism of probiotics, in animal models and to evaluate the lipid-lowering effects of probiotics on hyperlipidemic animal models through a meta-analysis of preclinical experiments. Methods: A comprehensive search of PubMed, Web of Science, EMBASE, Cochrane Library and Google Scholar up to June 2024 yielded nine studies that met the inclusion criteria (INPLASY registration number: No. CRD42024559937). Result The analysis revealed that mice receiving probiotics exhibited a significant increase in SCFA levels compared with control mice (acetic acid: standard mean difference [SMD] = 1.26, 95% confidence interval [CI] 0.80 to 1.72, P < 0.00001, I2 = 28%; propionic acid: SMD = 1.99, 95% CI 1.47 to 2.51; butyric acid: SMD = 0.66, 95% CI 0.04 to 1.28, P = 0.04, I2 = 22%; acetate: SMD = 4.5, 95% CI 3.57 to 5.42, P < 0.00001, I2 = 48%; propionate: SMD = 0.76, 95% CI 0.37 to 1.15, P = 0.0002, I2 = 44%; butyrate: SMD = 2.8, 95% CI 2.18 to 3.41, P < 0.00001, I2 = 26%). Additionally, probiotic consumption reduced markers of oxidation and inflammation as well as liver damage enzymes. Conclusion The findings from this meta-analysis suggest that probiotics can enhance SCFA content in the body, decrease lipid levels in animals, improve oxidative stress and inflammation, reduce liver damage, and effectively alleviate hyperlipidemia.
Collapse
Affiliation(s)
- Yuanyue Yao
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
| | - Siqi Ding
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jie Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wenhui Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jian Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ye Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yiyang Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mingzhou Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Li Mi
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yinzhu Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jinchi Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yonghong Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
3
|
Cruz Neto JPR, de Luna Freire MO, de Albuquerque Lemos DE, Ribeiro Alves RMF, de Farias Cardoso EF, de Moura Balarini C, Duman H, Karav S, de Souza EL, de Brito Alves JL. Targeting Gut Microbiota with Probiotics and Phenolic Compounds in the Treatment of Atherosclerosis: A Comprehensive Review. Foods 2024; 13:2886. [PMID: 39335815 PMCID: PMC11431284 DOI: 10.3390/foods13182886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease. Dysregulated lipid metabolism, oxidative stress, and inflammation are the major mechanisms implicated in the development of AS. In addition, evidence suggests that gut dysbiosis plays an important role in atherogenesis, and modulation of the gut microbiota with probiotics and phenolic compounds has emerged as a promising strategy for preventing and treating AS. It has been shown that probiotics and phenolic compounds can improve atherosclerosis-related parameters by improving lipid profile, oxidative stress, and inflammation. In addition, these compounds may modulate the diversity and composition of the gut microbiota and improve atherosclerosis. The studies evaluated in the present review showed that probiotics and phenolic compounds, when consumed individually, improved atherosclerosis by modulating the gut microbiota in various ways, such as decreasing gut permeability, decreasing TMAO and LPS levels, altering alpha and beta diversity, and increasing fecal bile acid loss. However, no study was found that evaluated the combined use of probiotics and phenolic compounds to improve atherosclerosis. The available literature highlights the synergistic potential between phenolic compounds and probiotics to improve their health-promoting properties and functionalities. This review aims to summarize the available evidence on the individual effects of probiotics and phenolic compounds on AS, while providing insights into the potential benefits of nutraceutical approaches using probiotic strains, quercetin, and resveratrol as potential adjuvant therapies for AS treatment through modulation of the gut microbiota.
Collapse
Affiliation(s)
- José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Deborah Emanuelle de Albuquerque Lemos
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Rayanne Maira Felix Ribeiro Alves
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Emmily Ferreira de Farias Cardoso
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Camille de Moura Balarini
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| |
Collapse
|
4
|
Costa PCT, de Luna Freire MO, de Oliveira Coutinho D, Godet M, Magnani M, Antunes VR, de Souza EL, Vidal H, de Brito Alves JL. Nutraceuticals in the management of autonomic function and related disorders: A comprehensive review. Pharmacol Res 2024; 208:107368. [PMID: 39191337 DOI: 10.1016/j.phrs.2024.107368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Nutraceuticals have been described as phytocomplexes when derived from foods of plant origin or a pool of secondary metabolites when derived from foods of animal origin, which are concentrated and administered in an appropriate form and can promote beneficial health effects in the prevention/treatment of diseases. Considering that pharmaceutical medications can cause side effects, there is a growing interest in using nutraceuticals as an adjuvant therapeutic tool for several disorders involving autonomic dysfunction, such as obesity, atherosclerosis and other cardiometabolic diseases. This review summarizes and discusses the evidence from the literature on the effects of various nutraceuticals on autonomic control, addressing the gut microbiota modulation, production of secondary metabolites from bioactive compounds, and improvement of physical and chemical properties of cell membranes. Additionally, the safety of nutraceuticals and prospects are discussed. Probiotics, resveratrol, quercetin, curcumin, nitrate, inositol, L-carnosine, and n-3 polyunsaturated fatty acids (n-3 PUFAs) are among the nutraceuticals most studied to improve autonomic dysfunction in experimental animal models and clinical trials. Further human studies are needed to elucidate the effects of nutraceuticals formulated of multitarget compounds and their underlying mechanisms of action, which could benefit conditions involving autonomic dysfunction.
Collapse
Affiliation(s)
- Paulo César Trindade Costa
- Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | | | | - Murielle Godet
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Marciane Magnani
- Department of Food Engineering, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Vagner Roberto Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Hubert Vidal
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | |
Collapse
|
5
|
Maia LA, de Souza JR, da Silva LDFR, Magnani M, de Souza EL, de Brito Alves JL. Effects of Probiotics on Inflammatory Biomarkers and Its Associations With Cardiac Autonomic Function in Women With Arterial Hypertension: A Secondary Analysis of a Randomized Clinical Trial. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10303-6. [PMID: 38842655 DOI: 10.1007/s12602-024-10303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Preclinical evidence suggests that probiotic administration may exert an anti-inflammatory effect and reduce autonomic dysfunction and blood pressure. This study evaluated the effects of probiotic therapy on inflammatory biomarkers and characterized the correlations between inflammation and cardiac autonomic function in women with arterial hypertension. Women were randomized into probiotics (n = 20) or placebo (n = 20). The probiotic group received 109 CFU/day of Lactobacillus (L.) paracasei LPC-37, L. rhamnosus HN001, L. acidophilus NCFM, and Bifidobacterium lactis HN019, and the placebo group received polydextrose. Clinical, electrocardiogram, heart rate variability (HRV) analysis, and cytokine levels were assessed at baseline and after 8 weeks. Women who received probiotics for 8 weeks had increased serum levels of IL-17A (p = 0.02) and decreased INF-γ (p = 0.02) compared to baseline. Probiotic supplementation increased serum levels of IL-10 compared to the placebo group (p = 0.03). Probiotic or placebo administration did not change serum levels of TNFα and IL-6. Serum levels of IL-2 (p = 0.001, and p = 0.001) and IL-4 (p = 0.001, and p = 0.001) were reduced in women receiving placebo or probiotics, respectively. Correlations between HRV indices and inflammatory variables showed that INF-γ was positively correlated with heart rate (HR) and sympathetic HRV indices and negatively correlated with vagal HRV indices. IL-10 was negatively correlated with HR and sympathetic HRV indices. IL-6 was negatively correlated with parasympathetic HRV indices and positively correlated with SD2/SD1 ratio. Probiotic therapy has a discreet anti-inflammatory effect in hypertensive women, and pro-inflammatory cytokines were negatively correlated with vagal modulation and positively correlated with sympathetic modulation of HRV. The clinical trial was registered in the Brazilian Registry of Clinical Trials (ReBEC) with the identification RBR-9mj2dt.
Collapse
Affiliation(s)
- Larissa Araújo Maia
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | | | | | - Marciane Magnani
- Department of Food Engineering, Technology Center, Federal University of Paraiba, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, Joao Pessoa, PB, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, Joao Pessoa, PB, Brazil.
| |
Collapse
|
6
|
Cruz Neto JPR, de Oliveira AM, de Oliveira KÁR, Sampaio KB, da Veiga Dutra ML, de Luna Freire MO, de Souza EL, de Brito Alves JL. Safety Evaluation of a Novel Potentially Probiotic Limosilactobacillus fermentum in Rats. Probiotics Antimicrob Proteins 2024; 16:752-762. [PMID: 37119497 DOI: 10.1007/s12602-023-10077-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
Limosilactobacillus (L) fermentum (strains 139, 263, 296) is a novel probiotic mixture isolated from fruit processing by-products. The use of this formulation has been associated with improvements in cardiometabolic, inflammatory, and oxidative stress parameters. The present study evaluated the safety of a potential multi-strain probiotic by genotoxicity (micronucleus assay) and subchronic toxicity study (13-week repeated dose). In the genotoxicity evaluation, L. fermentum 139, 263, 296 did not increase the frequency of micronuclei in erythrocytes of rats of both sexes at doses up to 1010 CFU/mL. In the subchronic toxicity study, the administration of L. fermentum did not promote adverse health effects, such as behavioral changes, appearance of tumors, changes in hematological and biochemical parameters. In addition, higher doses of L. fermentum 139, 263, 296 have been shown to reduce the levels of pro-inflammatory cytokines. Administration of potentially probiotic L. fermentum did not promote adverse health effects in rats and could be evaluated as a potential probiotic for humans.
Collapse
Affiliation(s)
- José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Alison Macário de Oliveira
- Department of Biochemistry, Biological Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Kataryne Árabe Rimá de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Maria Letícia da Veiga Dutra
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil.
| |
Collapse
|
7
|
Carneiro dos Santos LA, Carvalho RDDO, Cruz Neto JPR, de Albuquerque Lemos DE, de Oliveira KÁR, Sampaio KB, de Luna Freire MO, Aburjaile FF, Azevedo VADC, de Souza EL, de Brito Alves JL. A Mix of Potentially Probiotic Limosilactobacillus fermentum Strains Alters the Gut Microbiota in a Dose- and Sex-Dependent Manner in Wistar Rats. Microorganisms 2024; 12:659. [PMID: 38674604 PMCID: PMC11052373 DOI: 10.3390/microorganisms12040659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Multi-strain Limosilactobacillus (L.) fermentum is a potential probiotic with reported immunomodulatory properties. This study aimed to evaluate the composition, richness, and diversity of the gut microbiota in male and female rats after treatment with a multi-strain of L. fermentum at different doses. Thirty rats (fifteen male and fifteen female) were allocated into a control group (CTL), a group receiving L. fermentum at a dose of 108 CFU (Lf-108), and a group receiving L. fermentum at a dose of 1010 CFU (Lf-1010) for 13 weeks. Gut microbiota and serum cytokine levels were evaluated after L. fermentum treatment. Male CTL rats had a lower relative abundance of Bifidobacteriaceae and Prevotella and a lower alpha diversity than their female CTL counterparts (p < 0.05). In addition, male CTL rats had a higher Firmicutes/Bacteroidetes (F/B) ratio than female CTL rats (p < 0.05). In female rats, the administration of L. fermentum at 108 CFU decreased the relative abundance of Bifidobacteriaceae and Anaerobiospirillum and increased Lactobacillus (p < 0.05). In male rats, the administration of L. fermentum at 1010 CFU decreased the F/B ratio and increased Lachnospiraceae and the diversity of the gut microbiota (p < 0.05). The relative abundance of Lachnospiraceae and the alpha-diversity of gut microbiota were negatively correlated with serum levels of IL1β (r = -0.44) and TNFα (r = -0.39), respectively. This study identified important changes in gut microbiota between male and female rats and showed that a lower dose of L. fermentum may have more beneficial effects on gut microbiota in females, while a higher dose may result in more beneficial effects on gut microbiota in male rats.
Collapse
Affiliation(s)
- Lucas Alves Carneiro dos Santos
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | | | - José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Deborah Emanuelle de Albuquerque Lemos
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Kataryne Árabe Rimá de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Flavia Figueira Aburjaile
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (F.F.A.); (V.A.d.C.A.)
| | - Vasco Ariston de Carvalho Azevedo
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (F.F.A.); (V.A.d.C.A.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| |
Collapse
|
8
|
de Luna Freire MO, Cruz Neto JPR, de Albuquerque Lemos DE, de Albuquerque TMR, Garcia EF, de Souza EL, de Brito Alves JL. Limosilactobacillus fermentum Strains as Novel Probiotic Candidates to Promote Host Health Benefits and Development of Biotherapeutics: A Comprehensive Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10235-1. [PMID: 38393628 DOI: 10.1007/s12602-024-10235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Fruits and their processing by-products are sources of potentially probiotic strains. Limosilactobacillus (L.) fermentum strains isolated from fruit processing by-products have shown probiotic-related properties. This review presents and discusses the results of the available studies that evaluated the probiotic properties of L. fermentum in promoting host health benefits, their application by the food industry, and the development of biotherapeutics. The results showed that administration of L. fermentum for 4 to 8 weeks promoted host health benefits in rats, including the modulation of gut microbiota, improvement of metabolic parameters, and antihypertensive, antioxidant, and anti-inflammatory effects. The results also showed the relevance of L. fermentum strains for application in the food industry and for the formulation of novel biotherapeutics, especially nutraceuticals. This review provides evidence that L. fermentum strains isolated from fruit processing by-products have great potential for promoting host health and indicate the need for a translational approach to confirm their effects in humans using randomized, double-blind, placebo-controlled trials.
Collapse
Affiliation(s)
- Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | | | | | - Estefânia Fernandes Garcia
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I-Jd. Cidade Universitária, João Pessoa, PB, 58051-900, Brazil.
| |
Collapse
|
9
|
Dos Santos Nascimento D, Sampaio KB, do Nascimento YM, de Souza TA, de Souza FS, Júnior JVC, Tavares JF, da Silva MS, de Brito Alves JL, de Souza EL. Evaluating the Stability of a Novel Nutraceutical Formulation Combining Probiotic Limosilactobacillus fermentum 296, Quercetin, and Resveratrol Under Different Storage Conditions. Probiotics Antimicrob Proteins 2024; 16:13-25. [PMID: 36417111 DOI: 10.1007/s12602-022-10011-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
This study evaluated the stability of a novel nutraceutical formulation composed of the probiotic Limosilactobacillus fermentum 296, quercetin (QUE), and resveratrol (RES) (LFQR) under different storage conditions. The effects of different relative humidities (RH; 11, 22, and 33%) and storage temperatures (refrigeration temperature -4 °C and room temperature -25 °C) on the stability of LFQR were evaluated through the determination of thermal stability, viable cell counts, bacterial physiological status, antioxidant capacity, and contents of QUE and RES during long-term storage. RH did not affect endothermic reactions and mass reduction in LFQR. After a 15-day-humidification period, L. fermentum 296 had higher viable cell counts in LFQR under refrigeration temperature storage when compared to room temperature storage regardless of the RH. The physiological status of L. fermentum 296 in LFQR was overall similar during 90 days of storage (11% RH) under refrigeration and room temperature. L. fermentum 296 had the highest viable cell counts (> 6 log CFU/g) in LFQR up to day 90 of refrigeration storage (11% RH). LFQR kept high contents of QUE and RES and maintained antioxidant capacity during 90 days of storage under refrigeration and room temperature. The results showed that the higher stability and functionality of LFQR during long-term storage should be guaranteed under 11% RH and refrigeration temperature.
Collapse
Affiliation(s)
| | - Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Yuri Mangueira do Nascimento
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Thalisson Amorim de Souza
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Fábio Santos de Souza
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - José Venancio Chaves Júnior
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Josean Fechine Tavares
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcelo Sobral da Silva
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
10
|
Kumari M, Haranahalli Nataraj B, Prasad WG, Ali SA, Behare PV. Multi-Faceted Bioactivity Assessment of an Exopolysaccharide from Limosilactobacillus fermentum NCDC400: Antioxidant, Antibacterial, and Immunomodulatory Proficiencies. Foods 2023; 12:3595. [PMID: 37835248 PMCID: PMC10572761 DOI: 10.3390/foods12193595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Exopolysaccharides (EPS) are acknowledged for their diverse functional and technological properties. This study presents the characterization of EPS400, an acidic exopolysaccharide sourced from the native probiotic Limosilactobacillus fermentum NCDC400. Notably, this strain has demonstrated previous capabilities in enhancing dairy food texture and displaying in vivo hypocholesterolemic activity. Our investigation aimed to unveil EPS400's potential biological roles, encompassing antioxidant, antibacterial, and immunomodulatory activities. The results underscore EPS400's prowess in scavenging radicals, including the 2,2-diphenyl-1-picrylhydrazyl radical, 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) radical, superoxide radical, hydroxyl radical, and chelating activity targeting the ferrous ion. Furthermore, EPS400 displayed substantial antibacterial effectiveness against prevalent food spoilage bacteria such as Pseudomonas aeruginosa NCDC105 and Micrococcus luteus. Remarkably, EPS400 exhibited the ability to modulate cytokine production, downregulating pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and nitric oxide, while concurrently promoting the release of anti-inflammatory cytokine IL-10 within lipopolysaccharide-activated murine primary macrophages. Additionally, EPS400 significantly (p ≤ 0.05) enhanced the phagocytic potential of macrophages. Collectively, our findings spotlight EPS400 as a promising contender endowed with significant antioxidant, antibacterial, and immunomodulatory attributes. These characteristics propose EPS400 as a potential pharmaceutical or bioactive component, with potential applications in the realm of functional food development.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India
| | - Basavaprabhu Haranahalli Nataraj
- Dairy Chemistry and Bacteriology Section, Southern Regional Station, ICAR-National Dairy Research Institute, Bengaluru 560030, India
| | - Writdhama G. Prasad
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal 132001, India;
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal 132001, India
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Pradip V. Behare
- Technofunctional Starters Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India
| |
Collapse
|
11
|
de Assis Gadelha DD, de Brito Alves JL, da Costa PCT, da Luz MS, de Oliveira Cavalcanti C, Bezerril FF, Almeida JF, de Campos Cruz J, Magnani M, Balarini CM, Rodrigues Mascarenhas S, de Andrade Braga V, de França-Falcão MDS. Lactobacillus group and arterial hypertension: A broad review on effects and proposed mechanisms. Crit Rev Food Sci Nutr 2022; 64:3839-3860. [PMID: 36269014 DOI: 10.1080/10408398.2022.2136618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hypertension is the leading risk factor for cardiovascular diseases and is associated with intestinal dysbiosis with a decrease in beneficial microbiota. Probiotics can positively modulate the impaired microbiota and impart benefits to the cardiovascular system. Among them, the emended Lactobacillus has stood out as a microorganism capable of reducing blood pressure, being the target of several studies focused on managing hypertension. This review aimed to present the potential of Lactobacillus as an antihypertensive non-pharmacological strategy. We will address preclinical and clinical studies that support this proposal and the mechanisms of action by which these microorganisms reduce blood pressure or prevent its elevation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marciane Magnani
- Technology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | | | | | | |
Collapse
|
12
|
Lacerda DC, Trindade da Costa PC, Pontes PB, Carneiro dos Santos LA, Cruz Neto JPR, Silva Luis CC, de Sousa Brito VP, de Brito Alves JL. Potential role of Limosilactobacillus fermentum as a probiotic with anti-diabetic properties: A review. World J Diabetes 2022; 13:717-728. [PMID: 36188141 PMCID: PMC9521441 DOI: 10.4239/wjd.v13.i9.717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress, inflammation, and gut microbiota impairments have been implicated in the development and maintenance of diabetes mellitus. Strategies capable of recovering the community of commensal gut microbiota and controlling diabetes mellitus have increased in recent years. Some lactobacilli strains have an antioxidant and anti-inflammatory system capable of protecting against oxidative stress, inflammation, and diabetes mellitus. Experimental studies and some clinical trials have demonstrated that Limosilactobacillus fermentum strains can beneficially modulate the host antioxidant and anti-inflammatory system, resulting in the amelioration of glucose homeostasis in diabetic conditions. This review presents and discusses the currently available studies on the identification of Limosilactobacillus fermentum strains with anti-diabetic properties, their sources, range of dosage, and the intervention time in experiments with animals and clinical trials. This review strives to serve as a relevant and well-cataloged reference of Limosilactobacillus fermentum strains capable of inducing anti-diabetic effects and promoting health benefits.
Collapse
Affiliation(s)
- Diego Cabral Lacerda
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, 58051-900, Paraíba, Brazil
| | - Paulo César Trindade da Costa
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, 58051-900, Paraíba, Brazil
| | - Paula Brielle Pontes
- Department of Neuropsychiatry, Health Sciences Center, Federal University of Pernambuco, Recife, 50670-901, Pernambuco, Brazil
| | | | | | - Cristiane Cosmo Silva Luis
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, 58051-900, Paraíba, Brazil
| | | | | |
Collapse
|
13
|
Paulino do Nascimento LC, Lacerda DC, Ferreira DJS, de Souza EL, de Brito Alves JL. Limosilactobacillus fermentum, Current Evidence on the Antioxidant Properties and Opportunities to be Exploited as a Probiotic Microorganism. Probiotics Antimicrob Proteins 2022; 14:960-979. [PMID: 35467236 DOI: 10.1007/s12602-022-09943-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 12/14/2022]
Abstract
The unbalance in the production and removal of oxygen-reactive species in the human organism leads to oxidative stress, a physiological condition commonly linked to the occurrence of cancer, neurodegenerative, inflammatory, and metabolic disorders. The implications of oxidative stress in the gut have been associated with gut microbiota impairments and gut dysbiosis. Some lactobacilli strains have shown an efficient antioxidant system capable of protecting against oxidative stress and related-chronic diseases. Recently, in vitro and experimental studies and some clinical trials have demonstrated the efficacy of the administration of various Limosilactobacillus fermentum strains to modulate beneficially the host antioxidant system resulting in the amelioration of a variety of systemic diseases phenotypes. This review presents and discusses the currently available studies on identifying L. fermentum strains with anti-oxidant properties, their sources, range of the administered doses, and duration of the intervention in experiments with animals and clinical trials. This review strives to serve as a relevant and well-cataloged reference of L. fermentum strains with capabilities of inducing anti-oxidant effects and health-promoting benefits to the host, envisaging their broad applicability to disease control.
Collapse
Affiliation(s)
| | - Diego Cabral Lacerda
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - João Pessoa, Paraíba, Brazil
| | | | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - João Pessoa, Paraíba, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - João Pessoa, Paraíba, Brazil.
| |
Collapse
|
14
|
Limosilactobacillus fermentum Strains with Claimed Probiotic Properties Exert Anti-oxidant and Anti-inflammatory Properties and Prevent Cardiometabolic Disorder in Female Rats Fed a High-Fat Diet. Probiotics Antimicrob Proteins 2021; 15:601-613. [PMID: 34817804 DOI: 10.1007/s12602-021-09878-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
This study assessed the effects of a mixed formulation containing Limosilactobacillus (L.) fermentum 139, L. fermentum 263, and L. fermentum 296 on cardiometabolic parameters, inflammatory markers, short-chain fatty acid (SCFA) fecal contents, and oxidative stress in colon, liver, heart, and kidney tissues of female rats fed a high-fat diet (HFD). Female Wistar rats were allocated into control diet (CTL, n = 6), HFD (n = 6), and HFD receiving L. fermentum formulation (HFD-LF, n = 6). L. fermentum formulation (1 × 109 CFU/mL of each strain) was administered two twice a day for 4 weeks. Administration of L. fermentum increased acetate and succinate fecal contents and reduced hyperlipidemia and hyperglycemia in rats fed a HFD (p < 0.05). Administration of L. fermentum decreased low-grade inflammation and improved antioxidant capacity along the gut, liver, heart, and kidney tissues in female rats fed a HFD (p < 0.05). Administration of L. fermentum prevented dyslipidemia, inflammation, and oxidative stress in colon, liver, heart, and kidney in female rats fed a HFD.
Collapse
|