1
|
Cheng M, Shu Y, Li M, Li C, Liang T, Zhang Z. Characterisation of an edible active film prepared from bacterial nanocellulose/forsythia essential oil Pickering emulsions with funoran and its application in fresh meat. Int J Biol Macromol 2024; 280:136141. [PMID: 39349084 DOI: 10.1016/j.ijbiomac.2024.136141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This study sought to develop an edible active film by integrating Pickering emulsions of forsythia essential oil and bacterial nanofibers at various concentrations into a film-forming matrix composed of funoran (F). The stability of the emulsions was evaluated through examination of the micro-morphology, particle size and distribution, 7-day emulsification index, and embedding rate of the Pickering emulsions. Subsequently, selected Pickering emulsions were incorporated into F to generate the edible active film. Scanning electron microscopy, Fourier-transform infrared spectroscopy, and Raman spectroscopy revealed that the Pickering emulsion was uniformly distributed throughout the F film, interconnected by hydrogen bonds. X-ray Diffraction spectra exhibited changes in peak intensity and shifts in position attributable to the edible active film. Pickering emulsion had a minimal impact on thermal stability. The film's tensile strength significantly increased, while elongation at break decreased. The heightened concentration of hydroxyl groups in the film led to increased thickness, reduced moisture content, and enhanced hygroscopicity. The edible active film exhibited superior antioxidant and antibacterial properties, thereby more efficiently shielding against oxygen and water vapour. In preservation tests involving chicken and lamb, the Pickering emulsion led to elevations in pH, total volatile basic nitrogen, and thiobarbituric acid reactive substance levels in the meat.
Collapse
Affiliation(s)
- Ming Cheng
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China; Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan, Hebei 545000, PR China
| | - Mengli Li
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Chaoyu Li
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Tieqiang Liang
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, PR China.
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China.
| |
Collapse
|
2
|
Shen J, Zhang M, Yang C. Microencapsulation of ginger essential oil using mung bean protein isolate-chitosan complex coacervates: Application in the preservation of crab meatballs and the prediction of shelf life. Food Chem 2024; 449:139263. [PMID: 38657553 DOI: 10.1016/j.foodchem.2024.139263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Crab meatballs with more unsaturated fat tend to spoil. Ginger essential oil (GEO) with oxidation resistance was encapsulated into microcapsules (GM) by complex cohesion of mung bean protein isolate (MBPI) and chitosan (CS) in a ratio of 8:1 at pH = 6.4, encapsulation efficiency (EE) and payload (PL) of GM (D50 = 26.16 ± 0.45 μm) with high thermal stability were 78.35 ± 1.02% and 55.43 ± 0.64%. GM (0.6%, w/w) did not interfere with the original flavor of crab meatballs, and lowered values of pH, thiobarbituric acid reactive substances (TBARS) and total bacteria counts (TBC) of the products than those spiked with GEO and the control. The prediction accuracy of the logistic first-order growth kinetic equation in line with TBC (2.84%) was better than that of zero-order and Arrhenius coupled equation based on pH (7.48%) and TBARS (5.94%), but all of them could predict the shelf life of crab meatballs containing GM stored at 4-25 °C.
Collapse
Affiliation(s)
- Ju Shen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Chaohui Yang
- Yechun Food Production and Distribution Co., Ltd, 225000 Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Chen X, Lan W, Xie J. Characterization of active films based on chitosan/polyvinyl alcohol integrated with ginger essential oil-loaded bacterial cellulose and application in sea bass (Lateolabrax japonicas) packaging. Food Chem 2024; 441:138343. [PMID: 38211477 DOI: 10.1016/j.foodchem.2023.138343] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
The poor mechanical properties, low water-resistance, and limited antimicrobial activity of chitosan (CS)/polyvinyl alcohol (PVA) based film limited its application in aquatic product preservation. Herein, bacterial cellulose (BC) was used to load ginger essential oil (GEO). The effects of the addition of BC and different concentrations of GEO on the physicochemical and antimicrobial activities of films were systematically evaluated. Finally, the application of sea bass fillets was investigated. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis (XRD) analysis indicated dense networks were formed, which was verified by enhanced physical properties. The mechanical properties, barrier properties, and antimicrobial activities enhanced as GEO concentration increased. CPB0.8 (0.8 % GEO) film had better tensile strength (TS) and barrier performance, improved the quality, and extended the shelf-life of sea bass for another 6 days at least. Overall, active films are potential packaging materials for aquatic products.
Collapse
Affiliation(s)
- Xuening Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
4
|
Zhang X, Wang Y, Wang D, Tang J, Xu M. Synergistic stabilization of garlic essential oil nanoemulsions by carboxymethyl chitosan/Tween 80 and application for coating preservation of chilled fresh pork. Int J Biol Macromol 2024; 266:131370. [PMID: 38580027 DOI: 10.1016/j.ijbiomac.2024.131370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/18/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Garlic essential oil (GEO) is a potential natural antioxidant and antimicrobial agent for food preservation, but its intrinsic low water-solubility, high volatility and poor stability severely limit its application and promotion. In this work, we investigated the synergistic stabilization of the GEO-in-water nanoemulsion using carboxymethyl chitosan (CCS) and Tween 80 (TW 80). Additionally, the nanoemulsion was fabricated through high-pressure microfluidization and utilized for the coating-mediated preservation of chilled pork. The garlic essential oil nanoemulsion (GEON) with 3.0 % CCS and 3.0 % TW 80 exhibited more homogeneous droplet size (around 150 nm) and narrower size distribution, while maintained long-term stability with no significant change in size during 30 d storage. Compared with free GEO, the GEONs exhibited a higher scavenging capacity to DPPH and ABTS free radicals as well as higher inhibitory effects against Escherichia coli and Staphylococcus aureus, suggesting that the encapsulation of GEO in nanoemulsion considerably improved its antioxidant and antibacterial activities. Furthermore, the results of coating preservation experiments showed that the GEON coating effectively expanded the shelf-life of chilled fresh pork for approximately one week. Altogether, this study would guide the development of GEO-loaded nanoemulsions, and promote GEON as a promising alternative for coating preservation of chilled fresh meat.
Collapse
Affiliation(s)
- Xingzhong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Ying Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dan Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Min Xu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| |
Collapse
|
5
|
Wang K, Wang Y, Cheng M, Wang Y, Zhao P, Xi X, Lu J, Wang X, Han X, Wang J. Preparation and characterization of active films based on oregano essential oil microcapsules/soybean protein isolate/sodium carboxymethyl cellulose. Int J Biol Macromol 2024; 258:128985. [PMID: 38154359 DOI: 10.1016/j.ijbiomac.2023.128985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
This study aimed to prepare oregano essential oil microcapsules (EOMs) by the active coalescence method using gelatin and sodium alginate as wall materials and oregano essential oil (OEO) as the core material. EOMs were added to the soybean protein isolate (SPI)/sodium carboxymethyl cellulose (CMC) matrix to prepare SPI-CMC-EOM active films, and the physical and chemical features of the active films and EOMs were characterized. The results showed that the microencapsulated OEO could protect its active ingredients. Scanning electron microscopy results showed that EOMs were highly compatible with the film matrix. The solubility of active films decreased upon adding EOMs, and their ultraviolet resistance and thermal stability also improved. When the added amount of EOMs was 5 %, the active films had the best mechanical properties and the lowest water vapor permeability. The active films prepared under this condition had excellent comprehensive performance. Also, adding EOMs considerably enhanced the antioxidant of the active films and endowed them with antibacterial properties. The application of the SPI-CMC-EOM films to A. bisporus effectively delayed senescence and maintained the freshness of the postharvest A. bisporus. This study provided a theoretical foundation for the incorporation of EOMs into active films based on biological materials.
Collapse
Affiliation(s)
- Kaiyue Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yifan Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Meng Cheng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yirong Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Peixin Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiumei Xi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Jinhang Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xin Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Juan Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
6
|
Lin Y, Zhang L, Li X, Zhai C, Liu J, Zhang R. Effect and characterization of konjac glucomannan on xanthan gum/κ-carrageenan/agar system. Int J Biol Macromol 2024; 257:128639. [PMID: 38056153 DOI: 10.1016/j.ijbiomac.2023.128639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
A mixed polysaccharide system is an important strategy to improve the performance of a single polysaccharide. Herein, quaternary polysaccharide gels were prepared by konjac glucomannan (KGM), xanthan gum (XG), κ-carrageenan (κ-CA), and agar (AR). The effects of KGM were evaluated by combining water holding capacity (WHC), rheological analysis, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and texture profile analysis (TPA). More KGM gradually increased the springiness of the compounded gels. WHC increased and then decreased with the addition of KGM, performing best at KGM4 (KGM: κ-CA:XG:AR = 2:2:1:2). Rheological analysis showed that the compounded gels exhibited a pseudoplastic characteristic of shear thinning, KGM endowed the gel with a stronger shear thinning behavior and improved the solid-like nature of the gels at high temperatures. The thermal stability of the composite gel was improved by the participation of KGM. FTIR analysis showed that the interactions were mainly related to intermolecular hydrogen bonds and acetyl groups. The microscopic morphology of KGM4 was significantly continuous, smooth, and compact, exhibiting the best practical performance and taking the maximum advantage.
Collapse
Affiliation(s)
- Yicun Lin
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ling Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Xinxin Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chuang Zhai
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiaming Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ran Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
7
|
Yang W, Gong Y, Wang Y, Wu C, Zhang X, Li J, Wu D. Design of gum Arabic/gelatin composite microcapsules and their cosmetic applications in encapsulating tea tree essential oil. RSC Adv 2024; 14:4880-4889. [PMID: 38323015 PMCID: PMC10845123 DOI: 10.1039/d3ra08526k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Microencapsulation has been widely used to protect essential oils, facilitating their application in cosmetics. In this study, gelatin, gum arabic and n-butyl cyanoacrylate were used as wall materials, and composite microcapsules of tea tree essential oil (TTO) were prepared using a combination of composite coagulation and in situ polymerization methods. When the ratio of gelatin to gum arabic is 1 : 1, the ratio of TTO to n-butyl cyanoacrylate is 4 : 1, the curing time is 10 h, and the encapsulation efficiency (EE) under these conditions is 73.61%. Morphological observation showed that the composite capsule was a micron-sized spherical particle with an average particle size of 10.51 μm, and Fourier transform infrared spectroscopy (FT-IR) confirmed a complex coagulation reaction between gelatin and gum arabic, and the disappearance of the n-butyl cyanoacrylate peak indicated that the film was formed in a condensation layer. The thermogravimetric analysis (TGA) results showed that the composite capsule greatly improved the thermal stability of TTO. Rheological testing showed that the viscosity and viscoelasticity of the surface composite capsules have been improved. In addition, the composite capsule showed good stability in the osmotic environment and has good sustained-release performance and antioxidant capacity in the average human skin environment.
Collapse
Affiliation(s)
- Wei Yang
- College of Pharmacy, Jiamusi University Jiamusi Heilongjiang 154007 P. R. China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University Jiamusi 154007 P. R. China
| | - Yuxi Gong
- College of Pharmacy, Jiamusi University Jiamusi Heilongjiang 154007 P. R. China
| | - Yansong Wang
- College of Pharmacy, Jiamusi University Jiamusi Heilongjiang 154007 P. R. China
| | - Chao Wu
- College of Pharmacy, Jiamusi University Jiamusi Heilongjiang 154007 P. R. China
| | - Xiangyu Zhang
- College of Pharmacy, Jiamusi University Jiamusi Heilongjiang 154007 P. R. China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University Jiamusi 154007 P. R. China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University Jiamusi Heilongjiang 154007 P. R. China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University Jiamusi 154007 P. R. China
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University Jiamusi Heilongjiang 154007 P. R. China
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University Jiamusi 154007 P. R. China
| |
Collapse
|
8
|
Tiran Gunasena M, Hussein MZ, Ali A, Wahab MAA, Bashir Kutawa A, Rafif A, Afif Mohd Zobir S, Ahmad K. Zingiber officinale Roscoe Essential Oils-Loaded Chitosan Nanoparticles with Enhanced Bactericidal Efficacy against Burkholderia glumae in Rice. Chem Biodivers 2023; 20:e202300686. [PMID: 37905394 DOI: 10.1002/cbdv.202300686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2023]
Abstract
Ginger essential oils (GEO) shows exceptional antimicrobial properties against plant pathogens. Due to its high volatility and low stability, it requires encapsulation to retain its effective properties. The GEO-Chitosan (GEO-CS) nanobactericide was developed using the ionic gelation method. The nanobactericides show particle diameters of 465, 28, 35, 48 and 500 nm when sodium tripolyphosphate (TPP) concentrations used in the preparation were 0.0, 0.5, 1.0, 2.0 and 4.0 %, respectively. The X-ray diffraction and the UV-vis studies revealed that the GEO was encapsulated into the chitosan nanoparticles with an encapsulation efficiency of around 46 % and a loading capacity of 27-34 %. The antibacterial activity of GEO-chitosan nanobactericide against Burkholderia glumae (Bg) was found to be 7.5-11.8 mm, with minimum inhibitory concentration and minimum bactericidal concentration values of 15.6 μl/mL and 31.25 μl/mL, respectively. Hence, these findings indicate that the prepared GEO-CS nanobactericides were found to be effective against Bg. This preliminary study is toward the development of new agronanobactericides using a natural product to control Bg.
Collapse
Affiliation(s)
- Mahesh Tiran Gunasena
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
- Grain Legume and Oil Crop Research and Development Centre, Angunakolapelessa, 82220, Sri Lanka
| | - Mohd Zobir Hussein
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Semenyih, 43500, Malaysia
| | - Mohd Aswad Abdul Wahab
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Abdulaziz Bashir Kutawa
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
- Department of Plant Science and Biotechnology, Faculty of Life Sciences, Federal University Dutsin-Ma, P.M.B 500, Dutsin-Ma, 821101, Nigeria
| | - Amara Rafif
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Syazwan Afif Mohd Zobir
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Khairulmazmi Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, 43400, Malaysia
- Institute of Plantation Studies (IKP), Universiti Putra Malaysia, Serdang, 43400, Malaysia
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang, 43400, Malaysia
| |
Collapse
|
9
|
He J, Hadidi M, Yang S, Khan MR, Zhang W, Cong X. Natural food preservation with ginger essential oil: Biological properties and delivery systems. Food Res Int 2023; 173:113221. [PMID: 37803539 DOI: 10.1016/j.foodres.2023.113221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Recently, the increasing demand from consumers for preservative-free or naturally preserved foods has forced the food industry to turn to natural herbal and plant-derived preservatives rather than synthetic preservatives to produce safe foods. Essential oils derived from ginger (Zingiber officinale Roscoe) are widely known for their putative health-promoting bioactivities, and this paper covers their extraction methods, chemical composition, and antibacterial and antioxidant activities. Especially, the paper reviews their potential applications in food preservation, including nanoemulsions, emulsions, solid particle encapsulation, and biodegradable food packaging films/coatings. The conclusion drawn is that ginger essential oil can be used not only for direct food preservation but also encapsulated using various delivery forms such as nanoemulsions, Pickering emulsions, and solid particle encapsulation to improve its release control ability. The film of encapsulated ginger essential oil has been proven to be superior to traditional methods in preserving foods such as bread, meat, fish, and fruit.
Collapse
Affiliation(s)
- Jinman He
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; School of Life Sciences, Hainan University, Haikou 570228, PR China
| | - Milad Hadidi
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Siyuan Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Xinli Cong
- School of Life Sciences, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
10
|
Wang W, Zhang W, Li L, Deng W, Liu M, Hu J. Biodegradable starch-based packaging films incorporated with polyurethane-encapsulated essential-oil microcapsules for sustained food preservation. Int J Biol Macromol 2023; 235:123889. [PMID: 36870661 DOI: 10.1016/j.ijbiomac.2023.123889] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Novel starch-based packaging films with sustained antibacterial activity were successfully made by incorporating polyurethane-encapsulated essential-oil microcapsules (EOs@PU) as an alternative synthetic preservative for food preservation. Herein, three essential oils (EOs) were blended to make composite essential oils with a more harmonious aroma and higher antibacterial ability and encapsulated into polyurethane (PU) to form EOs@PU microcapsules based on interfacial polymerization. The morphology of the constructed EOs@PU microcapsules was regular and uniform with an average size of approximately 3 μm, thus enabling high loading capacity (59.01 %). As such, we further integrated the obtained EOs@PU microcapsules into potato starch to prepare food packaging films for sustained food preservation. Consequently, the prepared starch-based packaging films incorporated with EOs@PU microcapsules had an excellent UV blocking rate (>90 %) and low cell toxicity. Notably, the long-term release of EOs@PU microcapsules gave the packaging films a sustained antibacterial ability, prolonging the shelf life of fresh blueberries and raspberries at 25 °C (> 7 days). Furthermore, the biodegradation rate of food packaging films cultured with natural soil was 95 % after 8 days, clarifying the excellent biodegradability of the packaging films for environmental protection. As demonstrated, the biodegradable packaging films provided a natural and safe strategy for food preservation.
Collapse
Affiliation(s)
- Wei Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Weiwei Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Lin Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Weijun Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Ming Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China.
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China.
| |
Collapse
|
11
|
Tai Z, Zheng M, Yang Y, Xie C, Li Z, Xu C. Temperature controlled microcapsule loaded with Perilla essential oil and its application in preservation of peaches. Front Nutr 2023; 10:1087605. [PMID: 36814505 PMCID: PMC9939902 DOI: 10.3389/fnut.2023.1087605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
In this study, Perilla frutescens essential oil (PEO) loaded microcapsules (PEOM) were successfully prepared and their thermal stability, temperature-responsive releasing effect, antioxidant activity, antibacterial activity, and preservation of peach were systematically investigated. PEOM showed excellent encapsulation efficiency (91.5%) with a core-shell ratio of 1.4:1 and exhibited high thermal stability, indicating that PEOM could effectively maintain PEO release rate. In vitro assays indicated that the optimal kinetic model for PEO release fitted well with first order with a diffusion mechanism. A high level of antioxidant and antibacterial activity of PEOM was maintained. In addition, owing to its sustained release, PEOM could prolong the shelf life of peaches significantly. Therefore, PEOM has potential application and development prospects in the field of food preservation.
Collapse
Affiliation(s)
- Zhigang Tai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Minjie Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Cheng Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhenjie Li
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industry Co., Ltd., Kunming, China
| | - Chunping Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
12
|
Tian B, Liu J, Yang W, Wan JB. Biopolymer Food Packaging Films Incorporated with Essential Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1325-1347. [PMID: 36628408 DOI: 10.1021/acs.jafc.2c07409] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Petroleum-based packaging materials are typically nonbiodegradable, which leads to significant adverse environmental and health issues. Therefore, developing novel efficient, biodegradable, and nontoxic food packaging film materials has attracted increasing attention from researchers. Due to significant research and advanced technology, synthetic additives in packaging materials are progressively replaced with natural substances such as essential oils (EOs). EOs demonstrate favorable antioxidant and antibacterial properties, which would be an economical and effective alternative to synthetic additives. This review summarized the possible antioxidant and antimicrobial mechanisms of various EOs. We analyzed the properties and performance of food packaging films based on various biopolymers incorporated with EOs. The progress in intelligent packaging materials has been discussed as a prospect of food packaging materials. Finally, the current challenges regarding the practical application of EOs-containing biopolymer films in food packaging and areas of future research have been summarized.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| | - Wanzhexi Yang
- Department of Physiology, Pharmacology and Neuroscience, University College London, London WC1E 6BT, United Kingdom
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, Macau SAR, China
| |
Collapse
|
13
|
Microencapsulation of betanin by complex coacervation of carboxymethylcellulose and amaranth protein isolate for application in edible gelatin films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Wu K, Zhang T, Chai X, He D, Duan X, Yu B, Chen Y, Huang Y. Preparation and antibacterial and antioxidant ability of β-cyclodextrin complexes of vaporized Illicium verum essential oil. Food Sci Nutr 2022; 10:4003-4018. [PMID: 36348814 PMCID: PMC9632224 DOI: 10.1002/fsn3.2997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Compared with traditional liquid-liquid embedding method and solid-liquid embedding method of inclusion complexes of β-cyclodextrin (β-CD) inclusion of essential oil to form stable properties, the gas-liquid embedding method was applied to encapsulate vaporized illicium verum essential oil (IvEO), with β-CD as wall materials so that core and wall materials molecules are in active state during complexing process. At optimal conditions with a mass ratio of 1:10, temperature of 80°C, time of 1 h, the β-CD-IvEO inclusion complexes (β-CD-IvEO-ICs) had an encapsulation efficiency (EE) of 84.55 ± 2.31%. Fourier transform infrared spectroscopy (FTIR) revealed the encapsulation of IvEO into inclusion complexes, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) demonstrated the enhanced thermal stability of IvEO after embedding. Furthermore, the reducing power and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO)-scavenging capacity displayed certain capacity of antioxidation in a short time but stronger antioxidative activities as reaction time was extended. The diameter of growth zone (DGZ) indicated stronger antibacterial activity of β-CD-IvEO-ICs against Escherichia coli, Bacillus subtilis, Staphylococcus epidermidis, and Staphylococcus aureus. Moreover, the β-CD-IvEO-ICs could induce the bacteria producing more reactive oxygen species (ROS) than IvEO, resulting in bacterial death.
Collapse
Affiliation(s)
- Kegang Wu
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
| | - Tong Zhang
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
| | - Xianghua Chai
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
| | - Dong He
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
| | - Xuejuan Duan
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
| | - Bingying Yu
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
| | - Yongqi Chen
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
| | - Yuqiang Huang
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
| |
Collapse
|
15
|
Al-Harrasi A, Bhatia S, Al-Azri MS, Ullah S, Najmi A, Albratty M, Meraya AM, Mohan S, Aldawsari MF. Effect of Drying Temperature on Physical, Chemical, and Antioxidant Properties of Ginger Oil Loaded Gelatin-Sodium Alginate Edible Films. MEMBRANES 2022; 12:862. [PMID: 36135881 PMCID: PMC9500894 DOI: 10.3390/membranes12090862] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
The drying temperature is one of the crucial parameters that impacts the physical, chemical, and biological properties of edible films (EFs). This parameter determines the degree of crystallinity, which can further impact the film's mechanical, barrier, and optical properties. The present work is designed to investigate the effect of different drying temperature conditions (25 °C and 45 °C) on ginger essential oil (GEO) loaded Gelatin-sodium alginate composite films over their physical, chemical, and antioxidant properties. Results indicated that drying of films at 25 °C had a positive effect on certain properties of the EFs, such as the moisture content (MC), water solubility (S), swelling degree (SD), water vapor permeability (WVP), and mechanical and optical properties. SEM analysis showed that films dried at 25 °C presented more uniform surface properties with fewer cracks and pores compared to films dried at 45 °C. TGA analysis demonstrated the higher thermal stability of the films when dried at 25 °C. Findings obtained from X-ray diffraction (XRD) and fourier-transform infrared spectroscopy (FTIR) showed film crystallinity and electrostatic interactions between GE, SA, and GEO. Results obtained from antioxidant assays revealed that films dried at 25 °C showed comparable antioxidant capacity to that of butylated hydroxytoluene (BHT). Furthermore, it was found that the addition of SA and GEO to the blank GE films improved their physical, chemical, and antioxidant properties. The present work suggests that GEO loaded GE-SA based films showed better physical, chemical, and antioxidant potential when dried at a lower temperature. These novel materials can be utilized as potential packaging materials in the food industry.
Collapse
Affiliation(s)
- Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun 248007, India
| | - Mohammed Said Al-Azri
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Sana Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45124, Saudi Arabia
| | - Syam Mohan
- School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun 248007, India
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed F. Aldawsari
- College of Pharmacy, Prince Sattam Bin Abdul Aziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
16
|
Oliveira GDS, McManus C, Pires PGDS, dos Santos VM. Combination of cassava starch biopolymer and essential oils for coating table eggs. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.957229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This work aimed to evaluate the eggshell microbiota and the internal egg quality after coatings with cassava starch biopolymer enriched with different essential oils during 35 days of storage at 20°C. A total of 369 brown table eggs were used and distributed in the following treatments: uncoated eggs, coated with cassava starch + Ginger essential oil (CS+GIN), cassava starch + Lemongrass essential oil (CS+LEM), and cassava starch + Tahiti lemon essential oil (CS+TAH). The count of total aerobic mesophilic bacteria on coated eggshells at 0 and 35 days of storage were similar to each other (mean 0.70 ± 0.37 and 0.91 ± 0.22 log10 CFU/mL) and significantly lower compared to uncoated eggs (2.21 ± 0.17 and 3.17 ± 0.22 log10 CFU/mL), in that order. On the 35th day, coated eggs showed similar Haugh unit (HU) values between them (mean 70.61 ± 5.35; classified as A - high quality) and significantly higher than uncoated eggs (51.60 ± 4.28; classified as B - average quality). Cassava starch coatings added with essential oils preserved the internal quality of the eggs during storage for 5 weeks at 20°C, reducing the eggshell microbiota and effectively keeping it at low levels during storage.
Collapse
|
17
|
Polyvinylidene fluoride/ginger oil nanofiber scaffold for anticancer treatment: preparation, characterization, and biological evaluation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04338-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|