1
|
Fan L, Ma S, Li L, Huang J. Fermentation biotechnology applied to wheat bran for the degradation of cell wall fiber and its potential health benefits: A review. Int J Biol Macromol 2024; 275:133529. [PMID: 38950806 DOI: 10.1016/j.ijbiomac.2024.133529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Consumption of wheat bran is associated with health benefits. However, the insoluble cell layer fiber and considerable levels of anti-nutritional factors limit bioavailability of wheat bran, which can be effectively improved through fermentation. To comprehensively elucidate the precise biotransformation and health benefits mechanisms underlying wheat bran fermentation. This review investigates current fermentation biotechnology for wheat bran, nutritional effects of fermented wheat bran, mechanisms by which fermented wheat bran induces health benefits, and the application of fermented wheat bran in food systems. The potential strategies to improve fermented wheat bran and existing limitations on its application are also covered. Current findings support that microorganisms produce enzymes that degrade the cell wall fiber of wheat bran during the fermentation, releasing nutrients and producing new active substances while degrading anti-nutrient factors in order to effectively improve nutrient bioavailability, enhance antioxidant activity, and regulate gut microbes for health effects. Fermentation has been an effective way to degrade cell wall fiber, thereby improving nutrition and quality of whole grain or bran-rich food products. Currently, there is a lack of standardization in fermentation and human intervention studies. In conclusion, understanding effects of fermentation on wheat bran should guide the development and application of bran-rich products.
Collapse
Affiliation(s)
- Ling Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, Henan 475004, China
| | - Sen Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, Henan 475004, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Li Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, Henan 475004, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, Henan 475004, China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Collaborative Innovation Center of Functional Food by Green Manufacturing, Food and Pharmacy College, Xuchang University, Xuchang, Henan 461000, China.
| |
Collapse
|
2
|
Mulargia LI, Lemmens E, Gebruers K, D Udekem D Acoz P, Wouters AGB, Delcour JA. The particle sizes of milled wheat fractions affect the in vitro starch digestibility and quality parameters of wire-cut cookies made thereof. Food Funct 2024; 15:7974-7987. [PMID: 38984454 DOI: 10.1039/d4fo01315h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Slow digestion of starch is linked to various health benefits. The impact of wheat particle size on in vitro starch digestibility and quality of wire-cut cookies was here evaluated by including four soft wheat fractions [i.e. flour (average diameter, 83 μm), fine farina (643 μm), coarse farina (999 μm) and bran (1036 μm)] in the recipe. The susceptibility of starch in these fractions to in vitro digestion decreased with increasing particle size, resulting in a 76% lower digestion rate for coarse farina than for flour as found with the single first-order kinetic model. Starch was protected from hydrolysis likely due to delayed diffusion of pancreatic α-amylase through the intact farina cell walls. When 20-65% starch in flour for the control cookie recipe was substituted with the same percentages in fine and coarse farina, the starch digestion rate decreased when substitution levels increased. A 62% lower digestion rate was found at 65% substitution with coarse farina. Cell wall intactness was largely preserved in the cookies and most of the starch appeared as ungelatinised granules. Further, the cookie spread ratio during baking was 48% and 33% higher and the cookies were 63% and 57% less hard than control cookies when made with 65% fine farina and 65% coarse farina, respectively. The relatively low specific surface area of large wheat particles resulted in low water absorption and less dense packing. In conclusion, encapsulation of starch by intact cell walls in coarse wheat fractions makes them promising ingredients when developing starchy food products for controlled energy release.
Collapse
Affiliation(s)
- Leonardo I Mulargia
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium. E-mail.
| | - Elien Lemmens
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium. E-mail.
| | - Kurt Gebruers
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium. E-mail.
| | - Pierre D Udekem D Acoz
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium. E-mail.
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium. E-mail.
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium. E-mail.
| |
Collapse
|
3
|
Pietiäinen S, Lee Y, Jimenez-Quero A, Katina K, Maina NH, Hansson H, Moldin A, Langton M. Feruloylation and Hydrolysis of Arabinoxylan Extracted from Wheat Bran: Effect on Dough Rheology and Microstructure. Foods 2024; 13:2309. [PMID: 39123502 PMCID: PMC11311401 DOI: 10.3390/foods13152309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024] Open
Abstract
Feruloylated arabinoxylan (AX) is a potential health-promoting fiber ingredient that can enhance nutritional properties of bread but is also known to affect dough rheology. To determine the role of feruloylation and hydrolysis of wheat bran AX on dough quality and microstructure, hydrolyzed and unhydrolyzed AX fractions with low and high ferulic acid content were produced, and their chemical composition and properties were evaluated. These fractions were then incorporated into wheat dough, and farinograph measurements, large and small deformation measurements and dough microstructure were assessed. AX was found to greatly affect both fraction properties and dough quality, and this effect was modulated by hydrolysis of AX. These results demonstrated how especially unhydrolyzed fiber fractions produced stiff doughs with poor extensibility due to weak gluten network, while hydrolyzed fractions maintained a dough quality closer to control. This suggests that hydrolysis can further improve the baking properties of feruloylated wheat bran AX. However, no clear effects from AX feruloylation on dough properties or microstructure could be detected. Based on this study, feruloylation does not appear to affect dough rheology or microstructure, and feruloylated wheat bran arabinoxylan can be used as a bakery ingredient to potentially enhance the nutritional quality of bread.
Collapse
Affiliation(s)
- Solja Pietiäinen
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, 750 07 Uppsala, Sweden; (K.K.); (H.H.); (M.L.)
- Lantmännen ek för, Sankt Göransgatan 160, 112 17 Stockholm, Sweden;
| | - Youngsun Lee
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland; (Y.L.); (N.H.M.)
| | - Amparo Jimenez-Quero
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
| | - Kati Katina
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, 750 07 Uppsala, Sweden; (K.K.); (H.H.); (M.L.)
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland; (Y.L.); (N.H.M.)
| | - Ndegwa H. Maina
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland; (Y.L.); (N.H.M.)
| | - Henrik Hansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, 750 07 Uppsala, Sweden; (K.K.); (H.H.); (M.L.)
| | - Annelie Moldin
- Lantmännen ek för, Sankt Göransgatan 160, 112 17 Stockholm, Sweden;
| | - Maud Langton
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, 750 07 Uppsala, Sweden; (K.K.); (H.H.); (M.L.)
| |
Collapse
|
4
|
Mulargia LI, Lemmens E, Korompokis K, Reyniers S, Gebruers K, Goos P, Gamboa Carlosama NA, Wouters AGB, Delcour JA. Tailoring the formulation of sugar-snap cookies to lower in vitro starch digestibility: A response surface modelling approach. Food Chem 2024; 435:137601. [PMID: 37776657 DOI: 10.1016/j.foodchem.2023.137601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
An I-optimal response surface experimental design revealed impacts of dough moisture content (DMC, 14-22%) and level of wheat flour substitution (10-50%) by wheat gluten and one of six different native starches [wheat, (waxy) maize, rice, potato, pea] on sugar-snap cookie starch thermal properties, in vitro starch digestion, dough and cookie hardness and spread ratio. Increasing DMCs from 14 to 22% increased the cookie starch digestion rate constants of each starch source used. A linear increase of the constant by 25-30% across the 14 to 22% DMC range for all starches was predicted and validated. That cookie spread and hardness were related to the water retention capacity of the native starches used suggested that they underwent limited changes during baking. For each starch examined, formulations were optimized to lower in vitro starch digestion rate and extent, and cookie hardness, while maximizing dough spread ratio.
Collapse
Affiliation(s)
- Leonardo I Mulargia
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Elien Lemmens
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Konstantinos Korompokis
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Stijn Reyniers
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Kurt Gebruers
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Peter Goos
- Department of Biosystems, Division of Mechatronics, Biostatistics and Sensors (MeBioS), B-3001 Leuven, Belgium.
| | - Nicolas Andres Gamboa Carlosama
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Arno G B Wouters
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| | - Jan A Delcour
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| |
Collapse
|
5
|
Hernández-Pinto FJ, Miranda-Medina JD, Natera-Maldonado A, Vara-Aldama Ó, Ortueta-Cabranes MP, Vázquez Del Mercado-Pardiño JA, El-Aidie SAM, Siddiqui SA, Castro-Muñoz R. Arabinoxylans: A review on protocols for their recovery, functionalities and roles in food formulations. Int J Biol Macromol 2024; 259:129309. [PMID: 38216021 DOI: 10.1016/j.ijbiomac.2024.129309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Arabinoxylans (AXs) are compounds with high nutritional value and applicability, including prebiotics or supplementary ingredients, in food manufacturing industries. Unfortunately, the recovery of AXs may require advanced separation and integrated strategies. Here, an analysis of the emerging techniques to extract AXs from cereals and their by-products is discussed. This review covers distinct methods implemented over the last 2-3 years, identifying that the type of method, extraction source, AX physicochemical properties and pre-treatment conditions are the main factors influencing the recovery yield. Alkaline extraction is among the most used methods nowadays, mostly due to its simplicity and high recovery yield. Concurrently, recovered AXs applied in food applications is timely reviewed, such as potential bread ingredient, prebiotic and as a wall material for probiotic encapsulation, in beer and non-alcoholic beverage manufacturing, complementary ingredient in bakery products and cookies, improvers in Chinese noodles, 3D food printing and designing of nanostructures for delivery platforms.
Collapse
Affiliation(s)
- Fernanda Jimena Hernández-Pinto
- Tecnologico de Monterrey, Campus Querétaro. Av. Epigmenio González 500, Tecnológico, 76130 Santiago de Querétaro, Qro., Mexico
| | - Juan Daniel Miranda-Medina
- Tecnologico de Monterrey, Campus Guadalajara, Av. General Ramón Corona 2514, Zapopan 45138, Jalisco, Mexico
| | - Abril Natera-Maldonado
- Tecnologico de Monterrey, Campus Chihuahua, Av. H Colegio Militar 4700, Nombre de Dios, Chihuahua, Chih., Mexico
| | - Óscar Vara-Aldama
- Tecnologico de Monterrey, Campus Monterrey. Av. Eugenio Garza Sada Sur 2501 Sur, Tecnológico, 64849 Monterrey, N.L., Mexico
| | - Mary Pily Ortueta-Cabranes
- Tecnologico de Monterrey, Campus Monterrey. Av. Eugenio Garza Sada Sur 2501 Sur, Tecnológico, 64849 Monterrey, N.L., Mexico
| | | | - Safaa A M El-Aidie
- Dairy Technology Department, Animal Production Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Shahida Anusha Siddiqui
- Technical University of Munich, Department of Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 11/12 Narutowicza St., 80-233 Gdansk, Poland.
| |
Collapse
|
6
|
Khorasaniha R, Olof H, Voisin A, Armstrong K, Wine E, Vasanthan T, Armstrong H. Diversity of fibers in common foods: Key to advancing dietary research. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Effect of Tartary Buckwheat Bran Substitution on the Quality, Bioactive Compounds Content, and In Vitro Starch Digestibility of Tartary Buckwheat Dried Noodles. Foods 2022; 11:foods11223696. [PMID: 36429287 PMCID: PMC9689101 DOI: 10.3390/foods11223696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the impact of partial replacement of Tartary buckwheat flour (TBF) with Tartary buckwheat bran flour (TBBF) on the quality, bioactive compounds content, and in vitro starch digestibility of Tartary buckwheat dried noodles (TBDNs). When the substitution of TBBF was increased from 0 to 35%, the cooking and textural properties decreased significantly (p < 0.05), while the content of bioactive compounds (phenolic, flavonoids and dietary fiber) increased significantly (p < 0.05). In addition, the substitution of TBBF decreased the starch digestibility of TBDNs. A 10.4% reduction in eGI values was observed in the TBDNs with 35% TBBF substitution compared to the control sample. The results of differential scanning calorimetry showed that with the increase of TBBF, TBDNs starch became more resistant to thermal processing. Meanwhile, the X-ray diffraction and Fourier transform infrared spectroscopy results revealed that the long- and short-range ordered structures of TBDN starch increased significantly (p < 0.05). Furthermore, the substitution of TBBF decreased the fluorescence intensity of α-amylase and amyloglucosidase. This study suggests that replacing TBF with TBBF could produce low glycemic index and nutrient-rich TBDNs.
Collapse
|
8
|
Zhang L, Chen J, Xu F, Han R, Quan M, Wang L. Effect of Tremella fuciformis on dough structure and rheology, noodle flavor, and quality characteristics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Effect of Tremella fuciformis and Different Hydrocolloids on the Quality Characteristics of Wheat Noodles. Foods 2022; 11:foods11172617. [PMID: 36076803 PMCID: PMC9455474 DOI: 10.3390/foods11172617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
To improve the quality characteristics of noodles and enrich nutritional value, Tremella fuciformis (TF) powder was incorporated into noodles. Tremella fuciformis (TF) is an edible fungus with rich nutritional value, and TF gel has good viscosity properties. This paper explored the effect of TF on noodle quality, and compared the difference between TF and three hydrocolloids: sodium alginate (SA), guar gum (GG) and xanthan gum (XG). The results showed that TF could significantly (p < 0.05) increase the hardness, adhesiveness and chewiness of noodles, and showed a decreasing trend for additions greater than 3%. The addition of 3% TF enhanced storage modulus (G′), loss modulus (G″) and elasticity of dough. The addition of 3% TF also increased α-helix and β-sheet content, and degradation temperature in noodles. Meanwhile, it elevated the deeply bound water content and retarded water mobility. In addition, the content of slowly digestible starch and resistant starch in the noodles increased with the addition of 3% TF. It was found that the effect of 3% TF on the above data was not different from the effects of the three hydrocolloids (respectively, their optimal additions), and improved the quality characteristics of the noodles. The results provide guidance for the application of TF and the development of a new natural hydrocolloid and nutritionally fortified noodles.
Collapse
|
10
|
Tyl C, Marti A. Physicochemical and Nutritional Characterization of Bran-Enriched Products. Foods 2022; 11:foods11050675. [PMID: 35267308 PMCID: PMC8909908 DOI: 10.3390/foods11050675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Catrin Tyl
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Science, 1433 Ås, Norway
- Correspondence: (C.T.); (A.M.)
| | - Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Giovanni Celoria, 2, 20133 Milan, Italy
- Correspondence: (C.T.); (A.M.)
| |
Collapse
|