1
|
Luo J, Chen Z, Li Y, Qin X, Wang H, Zeng Z, Pan Y, Liu X. Improving the gel properties of Ficus pumila Linn. pectin by incorporating deacetylated konjac glucomannan. Int J Biol Macromol 2024; 278:134985. [PMID: 39217045 DOI: 10.1016/j.ijbiomac.2024.134985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
To improve the gelation behaviour of pectin, the effect of deacetylated konjac glucomannan (DKGM) with various deacetylation degrees (27.44 %, 44.32 %, 60.25 %, and 71.77 %) on the heat-induced gel characteristics of Ficus pumila Linn. pectin was studied. The hardness, chewiness, and adhesiveness of the gel increased as the degree of deacetylation increased from 27.44 % to 60.25 %, but decreased at 71.77 %. Additionally, DKGM addition resulted in higher apparent viscosity and non-Newtonian fluid behaviour in the composite gel. The incorporation of DKGM into the gel matrix strengthened the gel structure by promoting hydrogen bond formation and shortening relaxation time compared to the control. Scanning electron microscopy images revealed that the densification of the pectin gel network increased as the degree of deacetylation of konjac glucomannan rose from 27.44 % to 60.25 %, but then loosened when it exceeded 71.77 %. As the degree of deacetylation increased, the hydrophobic interaction between pectin and DKGM increased. Overall, the addition of DKGM effectively modulated the gel properties of Ficus pumila Linn. pectin, thus broadening its industrial application on different gel products.
Collapse
Affiliation(s)
- Jing Luo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhaojun Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yao Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Haoyuan Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhilong Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuemeng Pan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, China.
| |
Collapse
|
2
|
Miehle E, Eisner P, Bader-Mittermaier S. Effects of food processing on in vitro glucose release of high methylester pectin-enriched doughs. Food Chem 2024; 442:138331. [PMID: 38271902 DOI: 10.1016/j.foodchem.2023.138331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
The incidence of type 2 diabetes is linked to consuming processed, high-glycemic foods low in dietary fiber. Soluble dietary fibers are known to improve blood glucose tolerance. This study examined the impact of processing on the in vitro glucose release of fiber-rich, high-glycemic foods. The impact of composition and microstructure on in vitro glucose release and starch digestibility was evaluated in doughs - untreated, baked at 180 °C, and extruded at 150 °C and 180 °C - with partial enrichment of high-methylester pectin. Pectin enrichment decreased starch digestibility, altered the food matrix, and doubled in vitro chyme-viscosity resulting in reduced glucose release in baked (180 °C), and extruded (150 °C) products. Baking or extrusion cooking increased starch digestibility - converting slowly into rapidly available starch and free glucose. Additionally, resistant starch levels were enhanced by up to fivefold. The variations in glucose release originated from a complex interplay between starch digestibility, viscosity, and the food matrix.
Collapse
Affiliation(s)
- Elisabeth Miehle
- TUM School of Life Sciences, Technical University of Munich (TUM), D-85354 Freising, Germany; Fraunhofer Institute for Process Engineering and Packaging (IVV), D-85354 Freising, Germany.
| | - Peter Eisner
- Fraunhofer Institute for Process Engineering and Packaging (IVV), D-85354 Freising, Germany; ZIEL Institute for Food & Health, Core Facility Human Studies, Technical University of Munich, D-85354 Freising, Germany.
| | | |
Collapse
|
3
|
Li C, Xie W, Zhang X, Liu J, Zhang M, Shao JH. Pickering emulsion stabilized by modified pea protein-chitosan composite particles as a new fat substitute improves the quality of pork sausages. Meat Sci 2023; 197:109086. [PMID: 36580792 DOI: 10.1016/j.meatsci.2022.109086] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Pickering emulsion is a potential substitute for animal fat due to high stability and solid-like properties. Therefore, the effect of replacing 25%-100% pork backfat with Pickering emulsion (75% corn oil volume fraction) stabilized by modified pea protein-chitosan composite particles on the quality of sausages was studied. All meat pastes exhibited a strong gel-like rheological character (G' > G"). The incorporation of Pickering emulsion in sausages enhanced the textural properties (hardness, springiness, chewiness, cohesiveness and resilience) and the uniformity and compactness of micromorphology, as well as suppressed the cooking loss and TBARS content. In particular, the sausages with a backfat substitution ratio of 100%, showing a similar overall sensory acceptability to the backfat sausage, revealed the best rheological properties, texture properties and micromorphology and the lowest cooking loss and fat oxidation (P < 0.05). The results showed that Pickering emulsion stabilized by modified pea protein-chitosan composite particles is a potential fat substitute for meat products with the desirable characteristics.
Collapse
Affiliation(s)
- Chunqiang Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Wenru Xie
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xue Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jun Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mingyun Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
4
|
Maslova AY, Mishvelov AE, Nasrulaeva KN, Yasaeva JK, Tsgoev AS, Medova MM. Overview of the Pharmacological Use of Pectins and Pectin-Containing Substances: Recent Achievements and Prospects. PHARMACOPHORE 2023. [DOI: 10.51847/j34k56lsvr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
5
|
Xie X, Cai K, Yuan Z, Shang L, Deng L. Effect of Mealworm Powder Substitution on the Properties of High-Gluten Wheat Dough and Bread Based on Different Baking Methods. Foods 2022; 11:4057. [PMID: 36553798 PMCID: PMC9778090 DOI: 10.3390/foods11244057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Mealworms (Tenebrio molitor) are protein-rich edible insects that have been regarded as novel food ingredients. In this study, high-gluten wheat flour was formulated with dried mealworm powder at various levels (0%, 5%, 10%, 15%, and 20%) to study its influence on the pasting, farinograph, and extensograph properties and microstructure of the dough. A subsequent decrease in the pasting parameters was observed due to starch dilution. The water absorption, dough development time, and dough stability time decreased gradually from 71.9% to 68.67%, 13.6 min to 10.43 min, and 14.1 min to 5.33 min, respectively, with the increase in the substitution of mealworm powder from 0% to 20%. The farinograph characteristics corresponded to a weak gluten network formed through the dilution of gluten by the replacement of wheat flour with a non-gluten ingredient. The stretch ratio of the high-gluten dough increased gradually from 4.37 (M0) to 6.33 (M15). The increased stretching resistance and extensibility of the dough with 5% and 10% mealworm powder indicated that mealworm powder can act as a plasticizer in the gluten network, which might contribute to the decreased strength and increased elasticity and flexibility of the dough network. The bread made with three different baking methods showed similar increases in specific volume and decreased hardness up to the 10% substitution level, owing to the increased elasticity and flexibility of the dough. The GB/T 35869-2018 Rapid-baking method, GB/T 14611-2008 Straight dough method, and automatic bread maker method exhibited the highest specific volumes of 3.70 mL/g, 3.79 mL/g, and 4.14 mL/g when the wheat flour was substituted with 10% mealworm powder. However, 15% and 20% mealworm powder substitution markedly reduced the bread quality owing to the dilution effect and mealworm powder phase separation. These results provide a perspective on the relationship between the rheological properties of mealworm powder-substituted high-gluten dough and application suggestions for insect food development in the food industry.
Collapse
Affiliation(s)
| | | | | | | | - Lingli Deng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
6
|
Xie X, Yuan Z, Fu K, An J, Deng L. Effect of Partial Substitution of Flour with Mealworm ( Tenebrio molitor L.) Powder on Dough and Biscuit Properties. Foods 2022; 11:2156. [PMID: 35885398 PMCID: PMC9316987 DOI: 10.3390/foods11142156] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mealworm (Tenebrio molitor L.) is a type of edible insect rich in protein that has become popular as a protein-alternative ingredient in flour-based products to improve the nutritional properties of baking products. The mealworm powder substitution affected the pasting, farinograph, extensograph properties of wheat flour and the texture, nutritional, and sensory properties of the resulting soda biscuit. The pasting parameters (peak viscosity, trough viscosity, breakdown viscosity, final viscosity, and setback viscosity) and the water absorption decreased with the increased mealworm powder substitution level, which was ascribed to the dilution effect of mealworm powder. The farinograph parameters remained similar up to 15% substitution level. The extensograph results showed that mealworm powder substitution decreased the elastic properties of wheat dough as indicated by the consistently decreased extensibility, stretching energy, and stretching resistance, resulting in a significantly decreased baking expansion ratio of the soda biscuit. The protein, lipid, and dietary fiber content of the biscuits increased accordingly with the increased mealworm powder substitution level. The protein content of the soda biscuit was gradually increased from 9.13/100 g for the control (M0) to 16.0/100 g for that supplemented with 20% mealworm powder (M20), accompanied with the significantly increased essential amino acid content. Meanwhile, the fat and dietary fiber content of M20 exhibited 20.5 and 21.7% increase compared to those of M0. The score of the sensory attributes showed no significant difference up to 15% substitution level. The results demonstrated the 15% mealworm powder substitution level would not significantly affect the farinograph property, microstructure of wheat dough, and sensory acceptability.
Collapse
Affiliation(s)
| | | | | | | | - Lingli Deng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, College of Biological Science and Technology, Hubei Minzu University, Enshi 445000, China; (X.X.); (Z.Y.); (K.F.); (J.A.)
| |
Collapse
|
7
|
Siddiqui SA, Bahmid NA, Taha A, Khalifa I, Khan S, Rostamabadi H, Jafari SM. Recent advances in food applications of phenolic-loaded micro/nanodelivery systems. Crit Rev Food Sci Nutr 2022; 63:8939-8959. [PMID: 35426751 DOI: 10.1080/10408398.2022.2056870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current relevance of a healthy diet in well-being has led to a surging interest in designing novel functional food products enriched by biologically active molecules. As nature-inspired bioactive components, several lines of research have revealed the capability of polyphenolic compounds (phenolics) in the medical intervention of different ailments, i.e., tumors, cardiovascular and inflammatory diseases. Phenolics typically possess antioxidant and antibacterial properties and, due to their unique molecular structure, can offer superior platforms for designing functional products. They can protect food ingredients from oxidation and promote the physicochemical attributes of proteins and carbohydrate-based materials. Even though these properties contribute to the inherent benefits of bioactive phenolics as important functional ingredients in the food industry, the in vitro/in vivo instability, poor solubility, and low bioavailability are the main factors restricting their food/pharma applicability. Recent advances in the encapsulation realm are now offering efficient platforms to overcome these limitations. The application of encapsulation field may offer protection and controlled delivery of phenolics in food formulations. Here, we review recent advances in micro/nanoencapsulation of phenolics and highlight efficient carriers from this decade, which have been utilized successfully in food applications. Although further development of phenolic-containing formulations promises to design novel functional food formulations, and revolutionize the food industry, most of the strategies found in the scientific literature are not commercially applicable. Moreover, in vivo experiments are extremely crucial to corroborate the efficiency of such products.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Nur Alim Bahmid
- National Research and Innovation Agency, Jakarta, Indonesia
- Agricultural Product Technology Department, Sulawesi Barat University, Majene, Indonesia
| | - Ahmed Taha
- Center for Physical Sciences and Technology, State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Sipper Khan
- Institute of Agricultural Engineering Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Hadis Rostamabadi
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seid Mahdi Jafari
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
8
|
Phytochemical Characterization, Antioxidant Activity, and Cytotoxicity of Methanolic Leaf Extract of Chlorophytum Comosum (Green Type) (Thunb.) Jacq. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030762. [PMID: 35164026 PMCID: PMC8840168 DOI: 10.3390/molecules27030762] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/19/2022]
Abstract
Chlorophytum genus has been extensively studied due to its diverse biological activities. We evaluated the methanolic extract of leaves of Chlorophytum comosum (Green type) (Thunb.) Jacques, the species that is less studied compared to C. borivilianum. The aim was to identify phytoconstituents of the methanolic extract of leaves of C. comosum and biological properties of its different fractions. Water fraction was analyzed with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Nineteen compounds belonging to different chemical classes were identified in the methanolic extract of leaves of C. comosum (Green type) (Thunb.) Jacques. In addition to several fatty acids, isoprenoid and steroid compounds were found among the most abundant constituents. One of the identified compounds, 4'-methylphenyl-1C-sulfonyl-β-d-galactoside, was not detected earlier in Chlorophytum extracts. The water fraction was toxic to HeLa cells but not to Vero cells. Our data demonstrate that methanolic extract of leaves of C. comosum can be a valuable source of bioactive constituents. The water fraction of the extract exhibited promising antitumor potential based on a high ratio of HeLa vs. Vero cytotoxicity.
Collapse
|
9
|
HU JP, WANG SY, WANG DQ, ZONG KL, YANG JT. Effects of carrot powder on properties of pre-gelatinized waxy rice starch. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.81622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jin-Peng HU
- Anhui Science and Technology University, People’s Republic of China
| | - Sun-Yan WANG
- Anhui Science and Technology University, People’s Republic of China
| | - Da-Quan WANG
- Anhui Science and Technology University, People’s Republic of China
| | - Kai-Li ZONG
- Anhui Science and Technology University, People’s Republic of China
| | - Jian-Ting YANG
- Anhui Science and Technology University, People’s Republic of China
| |
Collapse
|