1
|
Endo Y, Fukazawa T, Inoue W, Shigematsu Y, Itabashi Y, Nagai T. Effects of Heat-Cooking with Edible Fats and Oils on the Levels of 3-Chloro-1, 2-Propanediol Fatty Acid Esters (3-MCPDEs), 2-Chloro-1, 3-Propanediol Fatty Acid Esters (2-MCPDEs) and Glycidyl Fatty Acid Esters (GEs) in Processed Foods. J Oleo Sci 2024; 73:875-885. [PMID: 38797689 DOI: 10.5650/jos.ess24025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
This study investigated the effect of cooking on the levels of 3-chloro-1, 2-propanediol esters (3-MCPDEs), 2-chloro-1, 3-propanediol esters (2-MCPDEs) and glycidyl esters (GEs) in deep-fried rice cracker, fried potato, croquette, fish fillet, chicken fillet and cooking oils (rice bran oil and palm oil). The levels of 2-/3-MCPDE in rice cracker fried with rice bran oil and the used oil remained about the same, while the levels of GEs in them fell with frying time. The levels of 2-/3-MCPDEs in fried potato, croquette, fried fish and chicken cutlet fried with rice bran oil and palm oil respectively fell with frying time, while the level of GEs in them remained about the same. The levels of 2-/3-MCPDEs and GEs in fried rice cooked with rice bran oil were under the method limit of quantification. These results provide insights the cooking has no influence with the levels of 2-/3-MCPDEs and GEs in cooked foods.
Collapse
Affiliation(s)
- Yasushi Endo
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Toru Fukazawa
- Japan Association for Inspection and Investigation of Foods Including Fats and Oils
| | - Wataru Inoue
- Japan Association for Inspection and Investigation of Foods Including Fats and Oils
| | - Yasuhiko Shigematsu
- Japan Association for Inspection and Investigation of Foods Including Fats and Oils
| | - Yutaka Itabashi
- Japan Association for Inspection and Investigation of Foods Including Fats and Oils
| | - Toshiharu Nagai
- School of Bioscience and Biotechnology, Tokyo University of Technology
- Tsukishima Foods Industry Co., Ltd
| |
Collapse
|
2
|
Bian L, Ge X, Feng S, Chen G, Li K, Wang X. Determination of chloropropanol esters and glycidyl esters in instant noodles based on solid-phase microextraction with chitosan-β-cyclodextrin coated fiber. Food Chem 2024; 442:138419. [PMID: 38237296 DOI: 10.1016/j.foodchem.2024.138419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
We developed a method for the determination of chloropropanol esters and glycidyl esters (GE) in instant noodles using solid-phase microextraction with chitosan-β-cyclodextrin (CS-β-CD) coated fiber coupled with gas chromatography-tandem mass spectrometry. The developed low-cost fiber coating can improve the sensitivity of the method. Immobilized enzymes can improve operational stability and reusability compared to free enzymes, thereby reducing costs. The adsorption isotherm was modeled using the Langmuir model, while the adsorption kinetics followed the pseudo second-order model. The limit of detection was 0.3 ng/L. The method exhibited satisfactory recoveries for the analytes, ranging from 80.2 % to 105.3 %, with relative standard deviations < 9.9 %. Furthermore, the results of the exposure assessment showed that chloropropanol esters do not pose unacceptable risks to different age groups. However, the margin of exposure for GE suggested a potential health risk for populations between the ages of 3 and 12 years old.
Collapse
Affiliation(s)
- Linlin Bian
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xue Ge
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Senwei Feng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guangxuan Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kefeng Li
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao.
| | - Xu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Shimamura Y, Wada Y, Tashiro M, Honda H, Masuda S. A comparison of the exposure system of glycidol-related chemicals on the formation of glycidol-hemoglobin adducts. Food Sci Nutr 2024; 12:471-480. [PMID: 38268888 PMCID: PMC10804089 DOI: 10.1002/fsn3.3770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 01/26/2024] Open
Abstract
Glycidol fatty acid esters that are present in foods are degraded in vivo to the animal carcinogen glycidol, which binds to the N-terminal valine of hemoglobin (Hb) to form N-(2,3-dihydroxypropyl)valine (diHOPrVal) adducts. The existence of other chemicals that are converted to glycidol is unknown. To determine the effect of different exposure conditions on the formation of diHOPrVal adducts, several glycidol-related chemicals (3-monochloropropane-1,2-diol; 3-MCPD, epichlorohydrin, glyceraldehyde, acrylic acid, and 1,2-propanediol) were evaluated using in vitro and in vivo (single/repeated dose) methods. In vitro, the reaction of 3-MCPD or epichlorohydrin with human Hb produced 17% and 0.7% of diHOPrVal, as compared to equimolar glycidol, respectively. Following a single administration of glycidol-related compounds to ICR mice, diHOPrVal formation was observed only in the epichlorohydrin-treated group after day 5 of exposure. After 14 days of repeated dosing, the amounts of diHOPrVal produced by epichlorohydrin and 3-MCPD in vivo were <1% of diHOPrVal produced by an equal molar concentration of glycidol. Furthermore, glyceraldehyde group produced 0.2% of diHOPrVal at the same molar concentration of glycidol equivalents, in which diHOPrVal formation could not be confirmed by the in vitro assay. The results indicate the usefulness of diHOPrVal as an exposure marker for glycidol; however, the contribution of its formation in vivo by exposure to various chemicals will be necessary to validate and interpret the results.
Collapse
Affiliation(s)
- Yuko Shimamura
- School of Food and Nutritional SciencesUniversity of ShizuokaShizuokaJapan
| | - Yuri Wada
- School of Food and Nutritional SciencesUniversity of ShizuokaShizuokaJapan
| | - Moeka Tashiro
- School of Food and Nutritional SciencesUniversity of ShizuokaShizuokaJapan
| | - Hiroshi Honda
- R&D Safety Science Research, Kao CorporationTochigiJapan
| | - Shuichi Masuda
- School of Food and Nutritional SciencesUniversity of ShizuokaShizuokaJapan
| |
Collapse
|
4
|
Chang YH, Liao KW, Lin ZE, Lee WJ. Preliminary assessments of population exposure to glycidyl esters and 3-monochloropropane-1,2-diol esters from miscellaneous oil-containing packaged foods in Taiwan. Food Chem 2024; 430:137055. [PMID: 37536070 DOI: 10.1016/j.foodchem.2023.137055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/15/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Glycidyl esters (GEs) and 3-monochloropropane-1,2-diol esters (3-MCPDEs) are carcinogenic contaminants found in refined oils. This study aimed to determine levels of GEs and 3-MCPDEs in packaged foodstuffs, and estimate daily exposure levels using food consumption data. The analysis involved Soxtec extraction and gas chromatography-mass spectrometry, and the recovery of spiked GEs and 3-MCPDEs was within the range of 80%∼110%. Results showed that GEs and 3-MCPDEs were almost ubiquitous in food products (95%), with the highest concentrations found in processed fats, followed by cookies and spreads. Food products containing palm-derived oils had significantly higher levels of contaminants (p < 0.05), with up to 58.1% of palm oil-containing foodstuffs exceeding the upper limits of either GEs or 3-MCPDEs set by the European Union. Cookies and instant noodles were identified as the main sources of exposure to GEs and 3-MCPDEs, with potential daily intake levels exceeding the tolerable daily intakes in children aged 0 ∼ 12 years.
Collapse
Affiliation(s)
- Yu-Hsuan Chang
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Zih-Ee Lin
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Wei-Ju Lee
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Research Center of Food Safety Inspection and Function Development, College of Nutrition, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Yung YL, Lakshmanan S, Kumaresan S, Chu CM, Tham HJ. Mitigation of 3-monochloropropane 1,2 diol ester and glycidyl ester in refined oil - A review. Food Chem 2023; 429:136913. [PMID: 37506659 DOI: 10.1016/j.foodchem.2023.136913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
The 3-Monochloropropane-1, 2-diol ester (3-MCPDE) and glycidyl ester (GE) are formed at high processing temperatures with the presence of respective precursors. Both are potentially harmful to humans, causing adverse health impacts including kidney damage, reproductive problems, and increased risk of cancer. The presence of 3-MCPDE and GE in palm oil is of particular concern because of its widespread use by the food industry. There are a variety of methods for reducing 3-MCPDE and GE. For example, water washing eliminates mostly inorganic chlorides that, in turn, reduce the formation of 3-MCPDE. 3-MCPDE has also been reduced by up to 99% using combinations of methods and replacing stripping steam with alcohol-based media. Activated carbon, clay, antioxidants, potassium-based salts, and other post-refining steps have positively lowered GE, ranging from 10 to 99%. Several approaches have been successful in reducing these process contaminants without affecting other quality metrics.
Collapse
Affiliation(s)
- Yen Li Yung
- Research & Development Department, IOI Edible Oils Sdn. Bhd., KM 12, Sg. Mowtas, Jalan Jaya Chip, off Jalan Batu Sapi, Sandakan, Sabah, Malaysia; Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.
| | - Shyam Lakshmanan
- Research & Development Department, IOI Edible Oils Sdn. Bhd., KM 12, Sg. Mowtas, Jalan Jaya Chip, off Jalan Batu Sapi, Sandakan, Sabah, Malaysia
| | - Sivakumar Kumaresan
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Chi Ming Chu
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Heng Jin Tham
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
6
|
Shi RRS, Shen P, Yu WZ, Cai M, Tay AJ, Lim I, Chin YS, Ang WM, Er JC, Lim GS, Wu Y, Li A, Aung KT, Chan SH. Occurrence and Dietary Exposure of 3-MCPD Esters and Glycidyl Esters in Domestically and Commercially Prepared Food in Singapore. Foods 2023; 12:4331. [PMID: 38231853 DOI: 10.3390/foods12234331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
This study investigated the prevalence and occurrence of 3-monochloropropanediol esters (3-MCPDEs) and glycidyl esters (GEs) in domestically and commercially prepared food in Singapore and assessed the total dietary exposure for the Singaporean population. Minimal impact on the formation of 3-MCPDEs and GEs was observed from the domestic cooking methods commonly practiced in Singapore such as deep frying and stir frying. The estimated total dietary exposure to 3-MCPDEs for the Singaporean population (aged 15 to 92) was 0.982 µg/kg bw/day for general consumers and 2.212 µg/kg bw/day for high consumers (95th percentile), which accounted for 49.1% and 110.6% of the tolerable dietary intake (TDI) at 2 µg/kg bw/day by the European Food Safety Authority (EFSA). The calculated margins of exposure (MOE) for GEs based on the dietary exposure for general consumers at 0.882 µg/kg bw/day and 2.209 µg/kg bw/day for high consumers were below 10,000, indicating a potential health concern. Our study showed that the occurrence of 3-MCPDEs and GEs varied among vegetable oils, and domestic cooking methods did not significantly impact the levels of 3-MCPDEs and GEs in prepared food. The critical factor influencing the prevalence and occurrence of 3-MCPDEs and GEs was the choice of oil used for cooking, which absorbed into the cooked food. It is essential to encourage the food industry to continue its innovation on mitigation measures to control and reduce 3-MCPDEs and GEs in vegetable oil production. Consumers are advised to make informed choices on food consumption and cooking oil for food preparation to reduce their exposure to 3-MCPDEs and GEs.
Collapse
Affiliation(s)
- Raymond Rong Sheng Shi
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Ping Shen
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Wesley Zongrong Yu
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Miaohua Cai
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Ai Jin Tay
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Ignatius Lim
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Yee Soon Chin
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Wei Min Ang
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Jun Cheng Er
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Geraldine Songlen Lim
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Yuansheng Wu
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Angela Li
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore
| |
Collapse
|
7
|
Yung YL, Lakshmanan S, Chu CM, Kumaresan S, Tham HJ. Simultaneous mitigation of 3-monochloropropane 1,2 diol ester and glycidyl ester in edible oils: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1164-1182. [PMID: 37549246 DOI: 10.1080/19440049.2023.2235608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 08/09/2023]
Abstract
The rising concern about the presence of 3-monochloropropane 1,2 diol ester (3-MCPDE) and glycidyl ester (GE) in food has prompted much research to be conducted. Some process modifications and the use of specific chemicals have been employed to mitigate both 3-MCPDE and GE. Alkalisation using NaOH, KOH, alkali metals or alkaline earth metals and post sparging with steam or ethanol and short path distillation have shown simultaneous mitigation of 51-91% in 3-MCPDE and of 13-99% in GE, both contaminants achieved below 1000 µg/kg. Some of the mitigation methods have resulted in undesirable deterioration in other parameters of the refined oil. When the processed oil is used in food processing, it results in changes to 3-MCPDE and GE. Repeated deep frying above 170 °C in the presence of NaCl and baking at 200 °C with flavouring (dried garlic and onion), resulted in increased 3-MCPDE. Repeated frying in the presence of antioxidants (TBHQ, rosemary and phenolics) decreased 3-MCPDE in processed food. The GE content in foods tends to decline with time, indicating instability of GE's epoxide ring.
Collapse
Affiliation(s)
- Yen Li Yung
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Research & Development Department, IOI Edible Oils Sdn. Bhd, off Jalan Batu Sapi, Sandakan, Sabah, Malaysia
| | - Shyam Lakshmanan
- Research & Development Department, IOI Edible Oils Sdn. Bhd, off Jalan Batu Sapi, Sandakan, Sabah, Malaysia
| | - Chi Ming Chu
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Sivakumar Kumaresan
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Heng Jin Tham
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
8
|
Wei T, Cao N, Han T, Chen Y, Zhou X, Niu L, Liu W, Li C. Lipidomics Analysis Explores the Mechanism of Renal Injury in Rat Induced by 3-MCPD. TOXICS 2023; 11:479. [PMID: 37368578 DOI: 10.3390/toxics11060479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
3-monochloropropane-1,2-diol (3-MCPD) is a food-process toxic substance, and its main target organ is the kidney. The present study examined and characterized the nephrotoxicity and the lipidomic mechanisms in a model of kidney injury in Sprague Dawley (SD) rats treated with high (45 mg/kg) and low (30 mg/kg) doses of 3-MCPD. The results showed that the ingestion of 3-MCPD led to a dose-dependent increase in serum creatinine and urea nitrogen levels and histological renal impairment. The oxidative stress indicators (MDA, GSH, T-AOC) in the rat kidney altered in a dose-dependent manner in 3-MCPD groups. The lipidomics analysis revealed that 3-MCPD caused kidney injury by interfering with glycerophospholipid metabolism and sphingolipid metabolism. In addition, 38 lipids were screened as potential biomarkers. This study not only revealed the mechanism of 3-MCPD renal toxicity from the perspective of lipidomics but also provided a new approach to the study of 3-MCPD nephrotoxicity.
Collapse
Affiliation(s)
- Tao Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Na Cao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Tiantian Han
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Liyang Niu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Wenting Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| | - Chang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, Nanchang 330047, China
- Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China
| |
Collapse
|
9
|
Alzahrani SA, Jamoussi B, Neamatallah AA, Aloufi FA, Halawani RF, Chakroun R, Jablaoui C. Instant Controlled Pressure Drop (DIC) Processing to Reduce 3-Monochloropropane-1,2-diol Concentration in Palm Oil. Processes (Basel) 2023. [DOI: 10.3390/pr11041085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Deodorization of vegetable oils may introduce potentially carcinogenic, as well as genotoxic contaminants, generating health risks for consumers. However, the deodorization step of the refining process leads to the formation of 3-monochloro-1,2-propanediol (3-MCPD). 3-MCPD has been classified as potentially carcinogenic to humans by the World Health Organization (WHO). The purpose of this study was to optimize recently updated oil treatment techniques using Instant Controlled Pressure Drop (DIC) to improve 3-MCPD elimination in edible palm oil. Based on the central composite (CCD-DoE), response surface methodology (RSM) was developed to find the best combination of two variables at five levels to remove 3-MCPD from the palm oil. Samples of palm oil were split into two groups. The first group was treated only by the traditional method, including refining, degumming, deacidification, decolorization, deodorization, dehydration, filtration, and dewaxing processes. The second group was first treated by the traditional method, followed by the DIC technique during different periods at various temperatures and pressures. In the experiment, the effect of 3-MCPD removal in palm oil was examined by varying the oil inlet pressure and reaction time from 200 to 325 kPa and from 8.66 to 26.34 s/cycle, respectively. The 3D surface graphs showed that the optimum reduction of 3-MCPD occurs with a reaction time of 26.34s and a pressure value of 413 kPa. Samples of palm oil were analyzed using a GC-MS/MS method to determine 3-MCPD concentrations. It was found that the DIC technology reduces oil contamination with 3-MCPD when used after the traditional oil treatment process.
Collapse
Affiliation(s)
- Saleh A. Alzahrani
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bassem Jamoussi
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullatif A. Neamatallah
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahed A. Aloufi
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Riyadh F. Halawani
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Radhouane Chakroun
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Cherif Jablaoui
- LaSIE (Laboratory of Engineering Sciences for Environment), La Rochelle University, 7356 UMR CNRS, Avenue Michel Crépeau, 17042 La Rochelle, France
| |
Collapse
|
10
|
Muhamad Rosli SH, Lau MS, Khalid T, Maarof SK, Jeyabalan S, Sirdar Ali S, Mustafa Khalid N, Md Noh MF, Salleh R, Palaniveloo L, Ahmad MH, Ahmad NI, Ahmad Suhaimi LR, Sharif Z, Abd Rahman N, Ahmad Bustamam RS, Malek R, Teoh BW, Khoo SC, Lim CS, Razali NH, Syed Mohamed AF. Association between dietary 3-monochloropropane-1,2-diol esters (3-MCPDE) and renal cancer in Peninsular Malaysia: exposure assessment and matched case-control study. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:475-492. [PMID: 36947708 DOI: 10.1080/19440049.2023.2183068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
3-Monochloropropane-1,2-diol esters (3-MCPDE) are food contaminants commonly found in refined vegetable oils and fats, which have possible carcinogenic implications in humans. To investigate this clinically, we conducted an occurrence level analysis on eight categories of retail and cooked food commonly consumed in Malaysia. This was used to estimate the daily exposure level, through a questionnaire-based case-control study involving 77 subjects with renal cancer, with 80 matching controls. Adjusted Odds Ratio (AOR) was calculated using the multiple logistic regression model adjusted for confounding factors. A pooled estimate of total 3-MCPDE intake per day was compared between both groups, to assess exposure and disease outcome. Among the food categories analysed, vegetable fats and oils recorded the highest occurrence levels (mean: 1.91 ± 1.90 mg/kg), significantly more than all other food categories (p < .05). Risk estimation found the Chinese ethnic group to be five times more likely to develop renal cancer compared to Malays (AOR = 5.15, p = .001). However, an inverse association was observed as the 3-MCPDE exposure among the Malays (median: 0.162 ± 0.229 mg/day/person) were found to be significantly higher than the Chinese (p = .001). There was no significant difference (p = .405) in 3-MCPDE intake between the cases (median: 0.115 ± 0.137 mg/day/person) and controls (median: 0.105 ± 0.151 mg/day/person), with no association between high intake of 3-MCPDE and the development of renal cancer (OR = 1.41, 95% CI: 0.5091-2.5553). Thus, there was insufficient clinical evidence to suggest that this contaminant contributes to the development of renal malignancies in humans through dietary consumption. Further research is necessary to support these findings, which could have significant public health ramifications for the improvement of dietary practices and food safety measures.
Collapse
Affiliation(s)
- Siti Hajar Muhamad Rosli
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Mei Siu Lau
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Tasnim Khalid
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Siti Khuzaimah Maarof
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Suganthi Jeyabalan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Syazwani Sirdar Ali
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Norhayati Mustafa Khalid
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Ruhaya Salleh
- Centre for Nutrition and Epidemiology Research, Institute of Public Health, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Lalitha Palaniveloo
- Centre for Nutrition and Epidemiology Research, Institute of Public Health, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Mohamad Hasnan Ahmad
- Centre for Nutrition and Epidemiology Research, Institute of Public Health, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Nurul Izzah Ahmad
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Malaysia
| | | | - Zawiyah Sharif
- Food Safety and Quality Division, Ministry of Health Malaysia, Wilayah Persekutuan, Malaysia
| | - Nurhazwani Abd Rahman
- Food Safety and Quality Division, Ministry of Health Malaysia, Wilayah Persekutuan, Malaysia
| | - Ros Suzanna Ahmad Bustamam
- Department of Radiotherapy and Oncology, Kuala Lumpur Hospital, Ministry of Health Malaysia, Jalan Pahang, Malaysia
| | - Rohan Malek
- Department of Urology, Selayang Hospital, Ministry of Health Malaysia, Lebuhraya Selayang-Kepong, Batu Caves, Malaysia
| | - Boon Wei Teoh
- Department of Urology, Pulau Pinang Hospital, Ministry of Health Malaysia, George Town, Malaysia
| | - Say Chuan Khoo
- Department of Urology, Pulau Pinang Hospital, Ministry of Health Malaysia, George Town, Malaysia
| | - Chun Sen Lim
- Department of Radiotherapy and Oncology, Sultan Ismail Hospital, Ministry of Health Malaysia, Johor Bahru, Malaysia
| | - Nurul Huda Razali
- Clinical Research Centre, Sultan Ismail Hospital, Ministry of Health Malaysia, Johor Bahru, Malaysia
| | - Ami Fazlin Syed Mohamed
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health Ministry of Health Malaysia, Setia Alam, Malaysia
| |
Collapse
|
11
|
Shimamura Y, Inagaki R, Oike M, Wada Y, Honda H, Masuda S. Potential Role of Lipase Activity on the Internal Exposure Assessment of Glycidol Released from Its Fatty Acid Esters. TOXICS 2023; 11:175. [PMID: 36851049 PMCID: PMC9961728 DOI: 10.3390/toxics11020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Glycidyl fatty acid esters (GEs) can be found in food, and they can be converted into genotoxic animal carcinogen glycidol in vivo by the action of lipase. This study examined whether human ingestion of charbroiled pork containing high levels of GEs (300 µg/day) increased glycidol-hemoglobin adduct (diHOPrVal), a marker of internal exposure to glycidol using LC-MS/MS. Contrary to expectation, the diHOPrVal value before ingesting charbroiled pork was 3.11 ± 1.10 pmol/g globin, which slightly decreased to 2.48 ± 0.47 pmol/g globin after 5 days of consumption. The decrease in lipase activity caused by the continuous consumption of lipid-rich foods such as meat in humans might decrease internal exposure to glycidol released from its esters. Thus, lipase activity was measured in C57/BL6J mice fed a high-fat diet (HFD) for 8 weeks, and diHOPrVal formation was measured after the administration of glycidyl oleate. Lipase activity was significantly lower in the HFD group than in the normal diet group. The amount of diHOPrVal was reduced in the HFD group. Therefore, the lipase activity was reduced by HFD, thereby decreasing the degradation of glycidol from glycidyl oleate. These results indicate that changes in lipase activity depending on the amount of lipids in the diet may affect the assessment of GEs exposure, and monitoring the lipase activity would provide a comprehensive understanding of exposure assessment.
Collapse
Affiliation(s)
- Yuko Shimamura
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryo Inagaki
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Minami Oike
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuri Wada
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroshi Honda
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Shuichi Masuda
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
12
|
Wei T, Liu W, Zheng Z, Chen Y, Shen M, Li C. Bibliometric Analysis of Research Trends on 3-Monochloropropane-1,2-Diol Esters in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15347-15359. [PMID: 36468534 DOI: 10.1021/acs.jafc.2c06067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
3-Monochloropropane-1,2-diol esters (3-MCPDE) are common food contaminants mainly formed in the edible oil refining process. Due to their potential hazards, 3-MCPDE has become a widespread food safety concern. In this study, CiteSpace and VOSviewer were used to conduct a bibliometric analysis on the 3-MCPDE research papers collected in the Web of Science Core Collection from 1998 to 2022. The results showed that the number of research publications on 3-MCPDE has increased rapidly since 2010. Analysis of the hotspots in 3-MCPDE studies showed that more attention has been paid to the exposure assessment, formation mechanism, detection methods, mitigation methods and toxicity, and toxicology of 3-MCPDE. Finally, the future trends of research on 3-MCPDE were analyzed and proposed. The mitigation methods and toxicology studies of 3-MCPDE are still the research hotspots in the future. In addition, nutritional intervention for 3-MCPDE toxicity will be an emerging trend.
Collapse
Affiliation(s)
- Tao Wei
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Wenting Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhe Zheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Chang Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|