1
|
Ke S, Hu Q, Zhu G, Li L, Sun X, Cheng H, Li L, Yao Y, Li H. Remodeling of white adipose tissue microenvironment against obesity by phytochemicals. Phytother Res 2024; 38:4904-4922. [PMID: 36786412 DOI: 10.1002/ptr.7758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Obesity is a kind of chronic disease due to a long-term imbalance between energy intake and expenditure. In recent years, the number of obese people around the world has soared, and obesity problem should not be underestimated. Obesity is characterized by changes in the adipose microenvironment, mainly manifested as hypertrophy, chronic inflammatory status, hypoxia, and fibrosis, thus contributing to the pathological changes of other tissues. A plethora of phytochemicals have been found to improve adipose microenvironment, thus prevent and resist obesity, providing a new research direction for the treatment of obesity and related diseases. This paper discusses remodeling of the adipose tissue microenvironment as a therapeutic avenue and reviews the progress of phytochemicals in fighting obesity by improving the adipose microenvironment.
Collapse
Affiliation(s)
- Shuwei Ke
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Qingyuan Hu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Guanyao Zhu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Linghuan Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xuechao Sun
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Hongbin Cheng
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Lingqiao Li
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Yuanfa Yao
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Jiang C, Chen Z, Liao W, Zhang R, Chen G, Ma L, Yu H. The Medicinal Species of the Lycium Genus (Goji Berries) in East Asia: A Review of Its Effect on Cell Signal Transduction Pathways. PLANTS (BASEL, SWITZERLAND) 2024; 13:1531. [PMID: 38891336 PMCID: PMC11174690 DOI: 10.3390/plants13111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Natural plants contain numerous chemical compounds that are beneficial to human health. The berries from the Lycium genus are widely consumed and are highly nutritious. Moreover, their chemical constituents have attracted attention for their health-promoting properties. In East Asia, there are three varieties of the Lycium genus (Lycium barbarum L., Lycium chinense Miller, and L. ruthenicum Murray) that possess medicinal value and are commonly used for treating chronic diseases and improving metabolic disorders. These varieties are locally referred to as "red Goji berries" or "black Goji berries" due to their distinct colors, and they differ in their chemical compositions, primarily in terms of carotenoid and anthocyanin content. The pharmacological functions of these berries include anti-aging, antioxidant, anti-inflammatory, and anti-exercise fatigue effects. This review aims to analyze previous and recent studies on the active ingredients and pharmacological activities of these Lycium varieties, elucidating their signaling pathways and assessing their impact on the gut microbiota. Furthermore, the potential prospects for using these active ingredients in the treatment of COVID-19 are evaluated. This review explores the potential targets of these Lycium varieties in the treatment of relevant diseases, highlighting their potential value in drug development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lijuan Ma
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (C.J.); (Z.C.); (W.L.); (R.Z.); (G.C.)
| | - Haijie Yu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (C.J.); (Z.C.); (W.L.); (R.Z.); (G.C.)
| |
Collapse
|
3
|
Zhang M, Li H, Tan T, Lu L, Mi J, Rehman A, Yan Y, Ran L. Anthocyanins from Lycium ruthenicum Murray attenuates high-fat diet-induced hypercholesterolemia in ApoE -/- mice are related to the modulation of gut microbiota and the ratio of conjugated to unconjugated bile acids in fecal bile acid profile. Food Sci Nutr 2024; 12:2379-2392. [PMID: 38628207 PMCID: PMC11016428 DOI: 10.1002/fsn3.3923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 04/19/2024] Open
Abstract
Previous findings showed that anthocyanins from Lycium ruthenicum Murray (ACN) reduced HFD-induced hypercholesterolemia by regulating gut microbiota, but the mechanism has not been fully understood. The objective of this research was to know whether the cholesterol-lowering impact of ACN in HFD-induced ApoE-/- mice is related to the gut microbiota-bile acid (BA) metabolism. Twenty-four male ApoE-/- mice were divided into three groups: the Control group, the HFD group, and the HFD + ACN group. Here, we showed that ACN intervention reduced HFD-induced body weight serum concentrations of TC and LDL-C and ameliorated lipid accumulation in the liver and adipose tissues. Besides, ACN altered gut microbiota composition in HFD-fed ApoE-/- mice. Moreover, UHPLC-MS/MS analysis revealed that ACN intervention significantly increased the ratio of conjugated to unconjugated BAs in feces induced by HFD, attributed to the increase in conjugated BAs and decrease in unconjugated BAs. Finally, the correlation analysis indicated that the above changes in fecal BA profile were linked with an increase in Bifidobacterium, Allobaculum and a decrease in Ileibacterium, Helicobacter, Rikenellaceae_RC9_gut_group, Blautia, Odoribacter, and Colidextribacter. In summary, ACN could alleviate HFD-induced hypercholesterolemia in ApoE-/- mice, which was associated with the improvement of gut microbiota and modulation of fecal BA profile.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public HealthNingxia Medical UniversityYinchuanChina
| | - Hui Li
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public HealthNingxia Medical UniversityYinchuanChina
| | - Tingting Tan
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public HealthNingxia Medical UniversityYinchuanChina
| | - Lu Lu
- Goji berry Research InstituteNingxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Jia Mi
- Goji berry Research InstituteNingxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Abdul Rehman
- School of Clinical MedicineNingxia Medical UniversityYinchuanChina
| | - Yamei Yan
- Goji berry Research InstituteNingxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Linwu Ran
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public HealthNingxia Medical UniversityYinchuanChina
| |
Collapse
|
4
|
Liu Y, Fernandes I, Mateus N, Oliveira H, Han F. The Role of Anthocyanins in Alleviating Intestinal Diseases: A Mini Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5491-5502. [PMID: 38446808 DOI: 10.1021/acs.jafc.3c07741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Anthocyanins are phytonutrients with physiological activity belonging to the flavonoid family whose transport and absorption in the human body follow specific pathways. In the upper gastrointestinal tract, anthocyanins are rarely absorbed intact by active transporters, with most reaching the colon, where bacteria convert them into metabolites. There is mounting evidence that anthocyanins can be used for prevention and treatment of intestinal diseases, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and colorectal cancer (CRC), through the protective function on the intestinal epithelial barrier, immunomodulation, antioxidants, and gut microbiota metabolism. Dietary anthocyanins are summarized in this comprehensive review with respect to their classification and structure as well as their absorption and transport mechanisms within the gastrointestinal tract. Additionally, the review delves into the role and mechanism of anthocyanins in treating common intestinal diseases. These insights will deepen our understanding of the potential benefits of natural anthocyanins for intestinal disorders.
Collapse
Affiliation(s)
- Yang Liu
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Iva Fernandes
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto 4169-007 Porto, Portugal
| | - Nuno Mateus
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto 4169-007 Porto, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto 4169-007 Porto, Portugal
| | - Fuliang Han
- College of Enology, Northwest A&F University, Yangling 712100, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China
- Heyang Experimental Demonstration Station, Northwest A&F University, Weinan 715300, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yongning 750104, China
| |
Collapse
|
5
|
Li F, Sun Q, Chen L, Zhang R, Zhang Z. Unlocking the health potential of anthocyanins: a structural insight into their varied biological effects. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38494796 DOI: 10.1080/10408398.2024.2328176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Anthocyanins have become increasingly important to the food industry due to their colorant features and many health-promoting activities. Numerous studies have linked anthocyanins to antioxidant, anti-inflammatory, anticarcinogenic properties, as well as protection against heart disease, certain types of cancer, and a reduced risk of diabetes and cognitive disorders. Anthocyanins from various foods may exhibit distinct biological and health-promoting activities owing to their structural diversity. In this review, we have collected and tabulated the key information from various recent published studies focusing on investigating the chemical structure effect of anthocyanins on their stability, antioxidant activities, in vivo fate, and changes in the gut microbiome. This information should be valuable in comprehending the connection between the molecular structure and biological function of anthocyanins, with the potential to enhance their application as both colorants and functional compounds in the food industry.
Collapse
Affiliation(s)
- Fangfang Li
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, Missouri, USA
| | - Quancai Sun
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruojie Zhang
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, Missouri, USA
| | - Zipei Zhang
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
6
|
Xu L, Tang Z, Herrera-Balandrano DD, Qiu Z, Li B, Yang Y, Huang W. In vitro fermentation characteristics of blueberry anthocyanins and their impacts on gut microbiota from obese human. Food Res Int 2024; 176:113761. [PMID: 38163698 DOI: 10.1016/j.foodres.2023.113761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
It has been demonstrated that the gut microbiota may play an important intermediary role in anthocyanins' beneficial impacts on obesity. However, the microbe-related anti-obesity mechanism of blueberry anthocyanins remains unclear. In this study, the interactions between blueberry anthocyanin extracts (BAE) and gut microbiota from obese humans were explored using an in vitro fermentation model. Due to hydrolysis and metabolism by the microbiota, the contents of blueberry anthocyanins are reduced during fermentation. It was demonstrated that both aglycones and glycosides affected the degradation rate. The microbial composition evaluation revealed that BAE could alleviate obesity by promoting the colonization of probiotics such as Lachnospiraceae_UCG-004 and Bacteroides, as well as inhibiting the proliferation of harmful bacteria including Escherichia-Shigella, Clostridium_sensu_stricto_1, and Klebsiella. Blueberry anthocyanin extracts facilitate the production of short-chain fatty acids (SCFAs), which is beneficial for obesity control. The relationship between blueberry anthocyanins, gut microbiota, and SCFAs was further investigated. Overall, this data provides new insights into the positive interaction between blueberry anthocyanins and gut microbiota in obese humans.
Collapse
Affiliation(s)
- Lujing Xu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
| | - Zhaocheng Tang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
| | | | - Zeyu Qiu
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Liaoning 110866, PR China.
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd, Zhuji 311899, PR China.
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
| |
Collapse
|
7
|
Jin Y, Chen L, Yu Y, Hussain M, Zhong H. Bioactive Components in Fruit Interact with Gut Microbes. BIOLOGY 2023; 12:1333. [PMID: 37887043 PMCID: PMC10604038 DOI: 10.3390/biology12101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Fruits contain many bioactive compounds, including polysaccharides, oligosaccharides, polyphenols, anthocyanins, and flavonoids. All of these bioactives in fruit have potentially beneficial effects on gut microbiota and host health. On the one hand, fruit rich in active ingredients can act as substrates to interact with microorganisms and produce metabolites to regulate the gut microbiota. On the other hand, gut microbes could promote health effects in the host by balancing dysbiosis of gut microbiota. We have extensively analyzed significant information on bioactive components in fruits based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Although the deep mechanism of action of bioactive components in fruits on gut microbiota needs further study, these results also provide supportive information on fruits as a source of dietary active ingredients to provide support for the adjunctive role of fruits in disease prevention and treatment.
Collapse
Affiliation(s)
- Yuanyuan Jin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| | - Ling Chen
- Sanya Branch of Hainan Food and Drug Inspection Institute, Sanya 572011, China;
| | - Yufen Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (Y.J.); (Y.Y.)
| |
Collapse
|
8
|
Shu C, Wu S, Li H, Tian J. Health benefits of anthocyanin-containing foods, beverages, and supplements have unpredictable relation to gastrointestinal microbiota: A systematic review and meta-analysis of random clinical trials. Nutr Res 2023; 116:48-59. [PMID: 37336096 DOI: 10.1016/j.nutres.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/21/2023]
Abstract
Anthocyanins are a type of natural pigment that has numerous health benefits. In recent years, the interaction of anthocyanins with gastrointestinal (GI) microbiota has been presented as a viable paradigm for explaining anthocyanin activities. The current study performed a systematic review and meta-analysis to determine the potential modulation of GI microbiota by anthocyanins in human health improvement. Clinical trials were retrieved from PubMed, Cochrane, Web of Knowledge, China Biology Medicine, China National Knowledge Infrastructure, and ClinicalTrials.gov with no language restrictions. Eight clinical trials (252 participants) were selected from the 1121 identified studies and the relative phylum abundance extracted from the trials was analyzed using a random-effects model. Based on the analysis, anthocyanins had no effect on the relative abundance of Firmicutes (standard mean difference [SMD]: -0.46 [-1.25 to 0.34], P = .26), Proteobacteria (SMD, -0.32 [-0.73 to 0.09], P = .13), nor Actinobacteria (SMD, -0.19 [-0.50 to 0.12], P = 0.24), but influenced the abundance of Bacteroidetes (SMD, 0.84 [0.17 to 1.52], P = .01) when compared with placebo/control. No significant influence on the relative abundance was detected when the data were analyzed following the "posttreatment vs. pretreatment" strategy. Our preliminary analysis revealed that the effects of anthocyanins on human GI microbiota vary between studies and individuals, and at the current stage, the clinical trials regarding the effects of anthocyanin interventions on human GI microbiota are lacking. More trials with larger sample sizes are needed to promote the clinical application of anthocyanins.
Collapse
Affiliation(s)
- Chi Shu
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866.
| | - Siyu Wu
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866
| | - Haikun Li
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, China, 100866
| |
Collapse
|
9
|
Zeng S, Lin S, Wang Z, Zong Y, Wang Y. The health-promoting anthocyanin petanin in Lycium ruthenicum fruit: a promising natural colorant. Crit Rev Food Sci Nutr 2023; 64:10484-10497. [PMID: 37351558 DOI: 10.1080/10408398.2023.2225192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Acylated anthocyanins derived from dietary sources have gained significant attention due to their health-promoting properties and potential as natural colorants with high stability. However, exploration of the functional food products using acylated anthocyanins enriched in fruits and vegetables remains largely delayed in food industries. The black goji (Lycium ruthencium) fruit (LRF) is a functional food that is extensively used due to its exceptionally high levels of acylated anthocyanins, including petanin. This review provides a comprehensive summary of the functional properties and anthocyanin components of LRF. The stability, bioaccessibility, bioavailability, and bioactivities of petanin, the major anthocyanin component, are compared with those of LRF anthocyanin extracts and other food sources. Furthermore, the biosynthetic pathway and regulatory network of petanin in LRF are proposed and constructed, respectively. The key genes that could be potentially used for metabolic engineering to produce petanin are predicted. Finally, the potential application of petanin derivatives in the food industry is also discussed. This review presents comprehensive and systematic information about the dual-function of petanin as a bioactive component and a promising natural colorant for future food industrial applications.
Collapse
Affiliation(s)
- Shaohua Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Lin
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiqiang Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zong
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Wang Z, Yao W, Sun Y, Han Y, Chen X, Gong P, Zhai P, Pei S, Xie J, Ba Q, Wang H. Eucommia Bark/Leaf Extract Improves Lipid Metabolism Disorders by Affecting Intestinal Microbiota and Microbiome-Host Interaction in HFD Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3297-3314. [PMID: 36753681 DOI: 10.1021/acs.jafc.2c07239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Eucommia bark contains many bioactive compounds and has anti-hyperlipidemic effects. However, due to the slow growth rate of the plant, there is a limited supply of this resource. Studies have demonstrated that Eucommia leaves contain active ingredients similar to those of Eucommia bark and also have anti-hyperlipidemic effects. It is not currently clear whether Eucommia leaf can be used as a substitute for Eucommia bark. Furthermore, their mechanism of action for anti-hyperlipidemia by improving the structure of the gut microbiota is also unclear. We aimed to determine the composition of the active ingredients in EBE and ELE by HPLC, establish an HFD-induced hyperlipidemia model, and combine fecal microbiota transplantation (FMT) experiments to investigate the mechanism of EBE/ELE anti-hyperlipidemia by modifying the structure of intestinal microbiota, as well as to compare the effects of EBE and ELE. Our results showed that EBE and ELE contained similar active ingredients and significantly alleviated lipid metabolism disorders and blood glucose levels in the HFD-induced hyperlipidemia model. In this study, EBE and ELE significantly reduced the relative abundance of Desulfovibrionaceae and Erysipelotrichaceae and significantly increased the relative abundance of Ruminococcaceae. They also promoted the production of short-chain fatty acids (SCFAs) and activated the gene expression of the SCFA receptors G protein-coupled receptor 41 (GPR41) and GPR43. In addition, EBE and ELE can significantly increase the expression of the fasting-induced adipose factor (Fiaf) gene in the colon and inhibit the secretion of lipoprotein lipase (LPL) in the liver, thereby inhibiting triglyceride (TG) synthesis. They also significantly activate the expression of GPR41 and GPR43 genes in the epididymal fat tissue, leading to reduced lipid accumulation in adipocytes. These effects on the target genes were associated with changes in the abundance of Desulfovibrionaceae, Erysipelotrichaceae, and Ruminococcaceae bacteria in the intestinal microbiota. Thus, regulating the relative abundance of these microbes may serve as prospective targets for EBE/ELE to influence the Fiaf-LPL gut-liver axis and the SCFAs-GPR41/GPR43 gut-fat axis. In addition, there was no significant difference in the anti-hyperlipidemic effects of ELE and EBE, suggesting that Eucommia leaf may be a suitable alternative to Eucommia bark for managing hyperlipidemia by regulating the structure of the intestinal microbiota. These findings suggest that Eucommia leaves have great potential for development as a functional food with lipid-lowering properties.
Collapse
Affiliation(s)
- Zhineng Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ying Sun
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yewen Han
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pengtao Zhai
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shuya Pei
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianwu Xie
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qian Ba
- Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Hui Wang
- Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
11
|
Protective Effect of Anthocyanins against Neurodegenerative Diseases through the Microbial-Intestinal-Brain Axis: A Critical Review. Nutrients 2023; 15:nu15030496. [PMID: 36771208 PMCID: PMC9922026 DOI: 10.3390/nu15030496] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
With the increase in human mean age, the prevalence of neurodegenerative diseases (NDs) also rises. This negatively affects mental and physiological health. In recent years, evidence has revealed that anthocyanins could regulate the functioning of the central nervous system (CNS) through the microbiome-gut-brain axis, which provides a new perspective for treating NDs. In this review, the protective effects and mechanisms of anthocyanins against NDs are summarized, especially the interaction between anthocyanins and the intestinal microbiota, and the microbial-intestinal-brain axis system is comprehensively discussed. Moreover, anthocyanins achieve the therapeutic purpose of NDs by regulating intestinal microflora and certain metabolites (protocateic acid, vanillic acid, etc.). In particular, the inhibitory effect of tryptophan metabolism on some neurotransmitters and the induction of blood-brain barrier permeability by butyrate production has a preventive effect on NDs. Overall, it is suggested that microbial-intestinal-brain axis may be a novel mechanism for the protective effect of anthocyanins against NDs.
Collapse
|
12
|
Chen S, Wang H, Hu N. Long-Term Dietary Lycium ruthenicum Murr. Anthocyanins Intake Alleviated Oxidative Stress-Mediated Aging-Related Liver Injury and Abnormal Amino Acid Metabolism. Foods 2022; 11:3377. [PMID: 36359989 PMCID: PMC9658481 DOI: 10.3390/foods11213377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 10/15/2023] Open
Abstract
In recent years, the relationship between Lycium ruthenicum Murr. anthocyanins (LRA) and health has attracted increasing attention. The purpose of this study is to investigate the anti-aging effect and mechanism of LRA through a D-galactose (DG)-induced aging rat model. Our results showed that the long-term intake of LRA, for 8 weeks, improved motor function, reduced serum aging markers, promoted the endogenous antioxidant system, and suppressed the serum inflammatory cytokines in aging rats. Besides, the LRA treatment alleviated DG-induced liver injuries by relieving the inflammation and inhibiting Fas/FasL-mediated cell death. More importantly, the abnormal serum metabolome profiles of the aging rats were restored by the LRA, relating to 38 metabolites and 44 pathways. Specifically, the LRA significantly affected the amino acid and protein-related metabolic pathways by regulating the levels of L-threonine, L-aspartic acid, glycine, L-histidine, D-homocysteine, L-homocitrulline, L-homoserine, guanidineacetic acid, and kynurenine. These results have important implications for the development of LRA as an anti-aging and liver-protective ingredient.
Collapse
Affiliation(s)
- Shasha Chen
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Honglun Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China
- Huzhou China-Science Innovation Centre of Plateau Biology, Huzhou 313000, China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, China
- Huzhou China-Science Innovation Centre of Plateau Biology, Huzhou 313000, China
| |
Collapse
|
13
|
Mechanism of glycometabolism regulation by bioactive compounds from the fruits of Lycium barbarum: A review. Food Res Int 2022; 159:111408. [DOI: 10.1016/j.foodres.2022.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/30/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
|
14
|
Beneficial Effects of Three Dietary Cyclodextrins on Preventing Fat Accumulation and Remodeling Gut Microbiota in Mice Fed a High-Fat Diet. Foods 2022; 11:foods11081118. [PMID: 35454706 PMCID: PMC9031782 DOI: 10.3390/foods11081118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Globally, obesity and its metabolic complications, which are intimately linked to diet, are major public health problems. Cyclodextrins (CDs) are cyclic oligosaccharides consisting of (α-1,4)-linked D-glucopyranose units that can reduce fat bioavailability and affect metabolism by improving intestinal flora as prebiotics. We compared the effects of three CDs on preventing fat accumulation and remodeling gut microbiota in a high-fat diet-fed C57BL/6J mouse model. α-CD maximized energy expenditure by 12.53%, caused the RER value to drop from 0.814 to 0.788, and increased the proportion of fatty acid oxidation for energy supply. β-CD supplementation resulted in a marked 24.53% reduction in weight gain and a decrease in epididymal-fat-relative weight from 3.76% to 2.09%. It also minimized ectopic fat deposition and improved blood lipid parameters. γ-CD maximized the concentration of SCFAs in the cecum from 6.29 to 15.31 μmol/g. All three CDs reduced the abundance ratio of Firmicutes and Bacteroidetes to a low-fat diet level, increased the abundance of Lactobacillus and Akkermansia, and reduced the abundance of Allobaculum and Ruminococcus. These findings imply that a combination of multiple CDs may exert superior effects as a potential strategy for obesity prevention.
Collapse
|
15
|
Li N, Liu X, Zhang J, Lang YZ, Lu L, Mi J, Cao YL, Yan YM, Ran LW. Preventive Effects of Anthocyanins from Lyciumruthenicum Murray in High-Fat Diet-Induced Obese Mice Are Related to the Regulation of Intestinal Microbiota and Inhibition of Pancreatic Lipase Activity. Molecules 2022; 27:molecules27072141. [PMID: 35408540 PMCID: PMC9000451 DOI: 10.3390/molecules27072141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Lyciumruthenicum Murray (L. ruthenicum) has been used both as traditional Chinese medicine and food. Recent studies indicated that anthocyanins are the most abundant bioactive compounds in the L. ruthenicum fruits. The purpose of this study was to investigate the preventive effects and the mechanism of the anthocycanins from the fruit of L. ruthenicum (ACN) in high-fat diet-induced obese mice. In total, 24 male C57BL/6J mice were divided into three groups: control group (fed a normal diet), high-fat diet group (fed a high-fat diet, HFD), and HFD +ACN group (fed a high-fat diet and drinking distilled water that contained 0.8% crude extract of ACN). The results showed that ACN could significantly reduce the body weight, inhibit lipid accumulation in liver and white adipose tissue, and lower the serum total cholesterol and low-density lipoprotein cholesterol levels compared to that of mice fed a high-fat diet. 16S rRNA gene sequencing of bacterial DNA demonstrated that ACN prevent obesity by enhancing the diversity of cecal bacterial communities, lowering the Firmicutes-to-Bacteroidota ratio, increasing the genera Akkermansia, and decreasing the genera Faecalibaculum. We also studied the inhibitory effect of ACN on pancreatic lipase. The results showed that ACN has a high affinity for pancreatic lipase and inhibits the activity of pancreatic lipase, with IC50 values of 1.80 (main compound anthocyanin) and 3.03 mg/mL (crude extract), in a competitive way. Furthermore, fluorescence spectroscopy studies showed that ACN can quench the intrinsic fluorescence of pancreatic lipase via a static mechanism. Taken together, these findings suggest that the anthocyanins from L. ruthenicum fruits could have preventive effects in high-fat-diet induced obese mice by regulating the intestinal microbiota and inhibiting the pancreatic lipase activity.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China; (N.L.); (X.L.); (J.Z.); (Y.-Z.L.)
| | - Xi Liu
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China; (N.L.); (X.L.); (J.Z.); (Y.-Z.L.)
| | - Jing Zhang
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China; (N.L.); (X.L.); (J.Z.); (Y.-Z.L.)
| | - Yan-Zhi Lang
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China; (N.L.); (X.L.); (J.Z.); (Y.-Z.L.)
| | - Lu Lu
- Goji Berry Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (L.L.); (J.M.); (Y.-L.C.)
| | - Jia Mi
- Goji Berry Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (L.L.); (J.M.); (Y.-L.C.)
| | - You-Long Cao
- Goji Berry Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (L.L.); (J.M.); (Y.-L.C.)
| | - Ya-Mei Yan
- Goji Berry Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; (L.L.); (J.M.); (Y.-L.C.)
- Correspondence: (Y.-M.Y.); (L.-W.R.); Tel.: +86-0951-688-6783 (Y.-M.Y.); +86-0951-698-0195 (L.-W.R.)
| | - Lin-Wu Ran
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China; (N.L.); (X.L.); (J.Z.); (Y.-Z.L.)
- Laboratory Animal Center, Ningxia Medical University, Yinchuan 750004, China
- Correspondence: (Y.-M.Y.); (L.-W.R.); Tel.: +86-0951-688-6783 (Y.-M.Y.); +86-0951-698-0195 (L.-W.R.)
| |
Collapse
|