1
|
Humaira, Ahmad I, Shakir HA, Khan M, Franco M, Irfan M. Bacterial Extracellular Vesicles: Potential Therapeutic Applications, Challenges, and Future Prospects. J Basic Microbiol 2024; 64:e2400221. [PMID: 39148315 DOI: 10.1002/jobm.202400221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
Almost all cell types naturally secret extracellular vesicles (EVs) in the extracellular space with variable metabolic cargo facilitating intracellular communication, posing immune-modulation capacity. Thus, "bacterial extracellular vesicles" (BEVs), with their great immunoregulatory, immune response stimulation and disease condition-altering potential, have gained importance in the medical and therapeutic industry. Various subtypes of BEVs were observed and reported in the literature, such as exosomes (30-150 nm), microvesicles (100-1000 nm), apoptotic bodies (1000-5000 nm), and oncosomes (1000-10,000 nm). As biological systems are complex entities, inserting BEVs requires extra high purity. Various techniques for BEV isolation have been employed alone or with other strategies, such as ultracentrifugation, precipitation, size-exclusion chromatography, affinity-based separation, ultrafiltration, and field-flow fractionation. But to date, no BEV isolation method is considered perfect as the lack of standard protocols limits their scale-up. Medical research has focused on BEVs to explore their diverse therapeutic potential. This review particularly focused on the recent advancements in the potential medical application of BEVs, current challenges, and prospects associated with their scale-up.
Collapse
Affiliation(s)
- Humaira
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hafiz Abdullah Shakir
- Institute of Zoology, Faculty of Life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Muhammad Khan
- Institute of Zoology, Faculty of Life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Marcelo Franco
- Department of Exact Science, State University of Santa Cruz, Ilheus, Brazil
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
2
|
Sanwlani R, Bramich K, Mathivanan S. Role of probiotic extracellular vesicles in inter-kingdom communication and current technical limitations in advancing their therapeutic utility. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:509-526. [PMID: 39697628 PMCID: PMC11648425 DOI: 10.20517/evcna.2024.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 12/20/2024]
Abstract
Diverse functions of probiotic extracellular vesicles (EVs) have been extensively studied over the past decade, proposing their role in inter-kingdom communication. Studies have explored their therapeutic role in pathophysiological processes ranging from cancer, immunoregulation, and ulcerative colitis to stress-induced depression. These studies have highlighted the significant and novel potential of probiotic EVs for therapeutic applications, offering immense promise in addressing several unmet clinical needs. Additionally, probiotic EVs are being explored as vehicles for targeted delivery approaches. However, the realization of clinical utility of probiotic EVs is hindered by several knowledge gaps, pitfalls, limitations, and challenges, which impede their wider acceptance by the scientific community. Among these, limited knowledge of EV biogenesis, markers and regulators in bacteria, variations in cargo due to culture conditions or EV isolation method, and lack of proper understanding of gut uptake and demonstration of in vivo effect are some important issues. This review aims to summarize the diverse roles of probiotic EVs in health and disease conditions. More importantly, it discusses the significant knowledge gaps and limitations that stand in the way of the therapeutic utility of probiotic EVs. Furthermore, the importance of addressing these gaps and limitations with technical advances such as rigorous omics has been discussed.
Collapse
Affiliation(s)
| | | | - Suresh Mathivanan
- Correspondence to: Prof. Suresh Mathivanan, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, Science Drive, Melbourne 3086, Victoria, Australia. E-mail:
| |
Collapse
|
3
|
Gao J, Hu Y, Yan S, Qi F, Li X, Sun Q. Evaluation of in vitro colonisation and immunomodulation of Lactiplantibacillus plantarumL3 microcapsules after subjected to yoghurt storage. Int J Food Sci Technol 2024; 59:4660-4671. [DOI: 10.1111/ijfs.17188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/22/2024] [Indexed: 01/05/2025]
Abstract
SummaryThis work aimed to evaluate the in vitro adhesive and immunoregulative effects of water‐in‐oil‐in‐water (W/O/W) microencapsulated Lactiplantibacillus plantarum L3 after subjected to yoghurt stress. The W/O/W microencapsulated L. plantarum L3 was prepared and dropped into fresh milk with commercial starters (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus). The yoghurt was prepared and stored at 4 °C for 21 days. The effects of yoghurt storage and simulated gastrointestinal treatment on the in vitro adhesive and immunomodulatory activities of L. plantarum L3 were investigated. Results showed that the hydrophobicity, auto‐aggregation and biofilm synthesis ability of L. plantarum L3 were improved after yoghurt storage but in a storage time‐dependent manner. The maximum coaggregation coefficients with S. aureus and E. coli were higher than 20%. L. plantarum L3 increased the viability and phagocytosis of mouse RAW264.7 cells, whereas the secretion of NO and proinflammatory cytokines induced by LPS was significantly reduced. In conclusion, yoghurt was a promising vehicle for delivering W/O/W L. plantarum L3 to the intestinal tract.
Collapse
Affiliation(s)
- Jiaxu Gao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences Heilongjiang University Harbin 150080 China
| | - Yingxi Hu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences Heilongjiang University Harbin 150080 China
| | - Shuqin Yan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences Heilongjiang University Harbin 150080 China
| | - Fuling Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences Heilongjiang University Harbin 150080 China
| | - Xiuliang Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences Heilongjiang University Harbin 150080 China
| | - Qingshen Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences Heilongjiang University Harbin 150080 China
| |
Collapse
|
4
|
Kango N, Nath S. Prebiotics, Probiotics and Postbiotics: The Changing Paradigm of Functional Foods. J Diet Suppl 2024; 21:709-735. [PMID: 38881201 DOI: 10.1080/19390211.2024.2363199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The rampant use of antibiotics has led to the emergence of multidrug resistance and is often coupled with gut dysbiosis. To circumvent the harmful impact of antibiotics, probiotics have emerged as an effective intervention. However, while the new probiotics are being added to the list, more recently, the nature and role of their counterparts, viz. prebiotics, postbiotics and parabiotics have also drawn considerable attention. As such, intricate relationships among these gut-biotics vis-à-vis their role in imparting health benefits is to be delineated in a holistic manner. Prebiotic dietary fibers are selectively fermented by probiotics and promote their colonization in the gut. The proliferation of probiotics leads to production of fermentation by-products (postbiotics) which affect the growth of enteropathogens by lowering the pH and producing inhibitory bacteriocins. After completing life-cycle, their dead remnants (parabiotics e.g. exopolysaccharides and cell wall glycoproteins) also inhibit adhesion and biofilm formation of pathogens on the gut epithelium. These beneficial effects are not just endemic to gut but a systemic response is witnessed at different gut-organ axes. Thus, to decipher the role of probiotics, it is imperative to unravel the interdependence between these components. This review elaborates on the recent advancements on various aspects of these gut-biotics and the mechanism of potential attributes like anti-oxidant, anti-inflammatory, anti-neoplastic, anti-lipidemic and anti-hyperglycemic benefits.
Collapse
Affiliation(s)
- Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
5
|
Kim SH, Shim YY, Kim YJ, Reaney MJT, Chung MJ. Anti-Inflammatory Effects of Barley Sprout Fermented by Lactic Acid Bacteria in RAW264.7 Macrophages and Caco-2 Cells. Foods 2024; 13:1781. [PMID: 38891009 PMCID: PMC11172312 DOI: 10.3390/foods13111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
The anti-inflammatory effects of supernatants produced from sprouted barley inoculated with Lactiplantibacillus plantarum KCTC3104 (Lp), Leuconostoc mesenteroides KCTC3530 (Lm), Latilactobacillus curvatus KCTC3767 (Lc), or a mixture of these lactic acid bacteria were investigated using RAW264.7 macrophages. BLp and BLc, the lyophilized supernatants of fermented sprouted barley inoculated with Lp and Lc, respectively, effectively reduced the nitric oxide (NO) levels hypersecreted by lipopolysaccharide (LPS)-stimulated RAW264.7 and LPS-stimulated Caco-2 cells. BLp and BLc effectively reduced the NO levels in LPS-stimulated RAW264.7 macrophages, and these effects tended to be concentration-dependent. BLc and BLp also exhibited strong DPPH radical scavenging activity and immunostimulatory effects. BLp and BLc significantly suppressed the levels of NO and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in LPS-stimulated RAW264.7 macrophages and LPS-stimulated Caco-2 cells, indicating their anti-inflammatory effects. These effects were greater than those of unfermented barley sprout (Bs). The functional components of Bs, BLp, and BLc were analyzed by HPLC, and it was found that lutonarin and saponarin were significantly increased in the fermented sprouted barley sample inoculated with Lp and Lc (BLp and BLc).
Collapse
Affiliation(s)
- Sang-Hyun Kim
- College of Veterinary Medicine and Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Youn Young Shim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Y.Y.S.); (M.J.T.R.)
- Prairie Tide Diversified Inc., Saskatoon, SK S7J 0R1, Canada
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea;
| | - Martin J. T. Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Y.Y.S.); (M.J.T.R.)
- Prairie Tide Diversified Inc., Saskatoon, SK S7J 0R1, Canada
| | - Mi Ja Chung
- Department of Food Science and Nutrition, College of Health Welfare, Gwangju University, Gwangju 61743, Republic of Korea
| |
Collapse
|
6
|
Liu R. A promising area of research in medicine: recent advances in properties and applications of Lactobacillus-derived exosomes. Front Microbiol 2024; 15:1266510. [PMID: 38686107 PMCID: PMC11056577 DOI: 10.3389/fmicb.2024.1266510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Lactobacillus-derived exosomes, small extracellular vesicles released by bacteria, have emerged as a promising area of research in recent years. These exosomes possess a unique structural and functional diversity that allows them to regulate the immune response and promote gut health. The isolation and purification of these exosomes are crucial for their effective use as a therapeutic agent. Several isolation and purification methods have been developed, including differential ultracentrifugation, density gradient centrifugation, and size-exclusion chromatography. Lactobacillus-derived exosomes have been demonstrated to have therapeutic potential in various diseases, such as inflammatory bowel disease, liver disease, and neurological disorders. Moreover, they have been shown to serve as effective carriers for drug delivery. Genetic engineering of these exosomes has also shown promise in enhancing their therapeutic potential. Overall, Lactobacillus-derived exosomes represent a promising area of research for the development of novel therapeutics for immunomodulation, gut health, and drug delivery.
Collapse
Affiliation(s)
- Rui Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| |
Collapse
|
7
|
Minamida K, Taira T, Sasaki M, Higuchi O, Meng XY, Kamagata Y, Miwa K. Extracellular vesicles of Weizmannia coagulans lilac-01 reduced cell death of primary microglia and increased mitochondrial content in dermal fibroblasts in vitro. Biosci Biotechnol Biochem 2024; 88:333-343. [PMID: 38124666 DOI: 10.1093/bbb/zbad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
We investigated the properties of extracellular vesicles from the probiotic Weizmannia coagulans lilac-01 (Lilac-01EVs). The phospholipids in the Lilac-01EV membrane were phosphatidylglycerol and mitochondria-specific cardiolipin. We found that applying Lilac-01EVs to primary rat microglia in vitro resulted in a reduction in primary microglial cell death (P < .05). Lilac-01EVs, which contain cardiolipin and phosphatidylglycerol, may have the potential to inhibit cell death in primary microglia. The addition of Lilac-01EVs to senescent human dermal fibroblasts suggested that Lilac-01 EVs increase the mitochondrial content without affecting their membrane potential in these cells.
Collapse
Affiliation(s)
- Kimiko Minamida
- Section of Research and Development, Arterio Bio Co., Ltd, 3-519-11, Zenibako, Otaru, Hokkaido, Japan
| | - Toshio Taira
- Sapporo Division, Cosmo Bio Co., Ltd, 3-513-2, Zenibako, Otaru, Hokkaido, Japan
| | - Masato Sasaki
- Biodynamic Plant Institute Co., Ltd, 1-10-212, 1-Chome, Technopark, Shimo-nopporo, Atsubetsu-Ku, Sapporo, Hokkaido, Japan
| | - Ohki Higuchi
- Biodynamic Plant Institute Co., Ltd, 1-10-212, 1-Chome, Technopark, Shimo-nopporo, Atsubetsu-Ku, Sapporo, Hokkaido, Japan
| | - Xian-Ying Meng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, Japan
| | - Kazunori Miwa
- Section of Research and Development, Arterio Bio Co., Ltd, 3-519-11, Zenibako, Otaru, Hokkaido, Japan
| |
Collapse
|
8
|
Lv H, Chen P, Wang Y, Xu L, Zhang K, Zhao J, Liu H. Chlorogenic acid protects against intestinal inflammation and injury by inactivating the mtDNA-cGAS-STING signaling pathway in broilers under necrotic enteritis challenge. Poult Sci 2024; 103:103274. [PMID: 38043405 PMCID: PMC10711517 DOI: 10.1016/j.psj.2023.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
This study aimed to determine the effects of chlorogenic acid (CGA) on the growth performance, intestinal health, immune response, and mitochondrial DNA (mtDNA)-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in broilers under necrotic enteritis (NE) challenge. The 180 one-day-old male Cobb 500 broilers with similar body weight of 44.59 ± 1.39 g were randomly allocated into 3 groups. The groups were control diet (Control group), control diet + NE challenge (NE group), and control diet + 500 mg/kg CGA + NE challenge (NE + CGA group), with 6 replicates per treatment. All broilers except the Control group were given sporulated coccidian oocysts (d 14) and Clostridium perfringens (d 19-21) by oral gavage. Our findings showed that CGA improved the growth performance and intestinal morphology in broilers under NE challenge. CGA supplementation elevated the barrier function in broilers under NE challenge, which reflected in the decreased serum concentrations of D-lactate and diamine oxidase, and upregulated jejunal protein expression of occludin. CGA supplementation also improved the immune function, which reflected in the increased concentrations and gene expressions of anti-inflammatory factors, and decreased concentrations and gene expressions of proinflammatory factors. CGA supplementation further enhanced intestinal cell proliferation and differentiation, which manifested in the increased number of goblet cells and positive cells of proliferating cell nuclear antigen on d 28 and 42. Furthermore, CGA supplementation decreased the mtDNA (d 42) and mitochondrial reactive oxygen species levels (d 28 and 42), and increased the mitochondrial membrane potential (d 42) and mitochondrial complex I (d 28 and 42) or III (d 28) activity. Broilers challenged with NE had upregulated jejunal protein expressions of cGAS, phospho-TANK-binding kinase 1, and phospho-interferon regulatory factor 7 compared with the Control group, which were downregulated after CGA supplementation. In conclusion, dietary supplementation CGA could protect against intestinal inflammation and injury by reducing the leakage of mtDNA and inactivating the cGAS-STING signaling pathway in broilers under NE challenge.
Collapse
Affiliation(s)
- Huimin Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Lianbin Xu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
9
|
Li M, Mao B, Tang X, Zhang Q, Zhao J, Chen W, Cui S. Lactic acid bacteria derived extracellular vesicles: emerging bioactive nanoparticles in modulating host health. Gut Microbes 2024; 16:2427311. [PMID: 39538968 PMCID: PMC11572086 DOI: 10.1080/19490976.2024.2427311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Lactic acid bacteria derived extracellular vesicles (LAB-EVs) are nano-sized and carry a variety of biological cargoes. LAB-EVs have proven to be potential mediators of intercellular communication, serving not only the parental bacteria but also the host cell in both physiology and pathology. LAB-EVs are therapeutically beneficial in various diseases through a cell-free strategy. Particularly, EVs secreted from probiotics can exert health-promoting effects on humans. Additionally, the excitement around LAB-EVs has extended to their use as nano-sized drug carriers, since they can traverse biological barriers. Nevertheless, significant challenges in terms of isolation, characterization, and safety must be addressed to ensure the clinical application of LAB-EVs. Therefore, this review emphasizes the isolation and purification methods of LAB-EVs. We also introduce the biogenesis, cargo sorting, and functions of LAB-EVs. The biological regulatory factors of LAB-EVs are summarized and discussed. Special attention is given to the interaction between LAB-EVs and the host, their ability to maintain intestinal homeostasis, and the immunity and inflammation they induce in diverse diseases. Furthermore, we summarize the characterization of LAB-EV cargoes by advanced analytical methods such as proteomics. Finally, we discuss the challenges and opportunities of LAB-EVs as a means of diagnosis and treatment in clinical translation. In conclusion, this review scrutinizes current knowledge and provides guidelines for proposing new perspectives for future research in the field of LAB-EVs.
Collapse
Affiliation(s)
- Mohan Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Pirolli NH, Reus LSC, Mamczarz Z, Khan S, Bentley WE, Jay SM. High performance anion exchange chromatography purification of probiotic bacterial extracellular vesicles enhances purity and anti-inflammatory efficacy. Biotechnol Bioeng 2023; 120:3368-3380. [PMID: 37555379 PMCID: PMC10592193 DOI: 10.1002/bit.28522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Bacterial extracellular vesicles (BEVs), including outer membrane vesicles, have emerged as a promising new class of vaccines and therapeutics to treat cancer and inflammatory diseases, among other applications. However, clinical translation of BEVs is hindered by a current lack of scalable and efficient purification methods. Here, we address downstream BEV biomanufacturing limitations by developing a method for orthogonal size- and charge-based BEV enrichment using tangential flow filtration (TFF) in tandem with high performance anion exchange chromatography (HPAEC). The data show that size-based separation coisolated protein contaminants, whereas size-based TFF with charged-based HPAEC dramatically improved purity of BEVs produced by probiotic Gram-negative Escherichia coli and Gram-positive lactic acid bacteria (LAB). Escherichia coli BEV purity was quantified using established biochemical markers while improved LAB BEV purity was assessed via observed potentiation of anti-inflammatory bioactivity. Overall, this work establishes orthogonal TFF + HPAEC as a scalable and efficient method for BEV purification that holds promise for future large-scale biomanufacturing of therapeutic BEV products.
Collapse
Affiliation(s)
- Nicholas H. Pirolli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Laura Samantha C. Reus
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Zuzanna Mamczarz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Sulayman Khan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Program in Molecular and Cell Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
11
|
Abd Mutalib N, Syed Mohamad SA, Jusril NA, Hasbullah NI, Mohd Amin MCI, Ismail NH. Lactic Acid Bacteria (LAB) and Neuroprotection, What Is New? An Up-To-Date Systematic Review. Pharmaceuticals (Basel) 2023; 16:712. [PMID: 37242494 PMCID: PMC10221206 DOI: 10.3390/ph16050712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND In recent years, the potential role of probiotics has become prominent in the discoveries of neurotherapy against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Lactic acid bacteria (LAB) exhibit neuroprotective properties and exert their effects via various mechanisms of actions. This review aimed to evaluate the effects of LAB on neuroprotection reported in the literature. METHODS A database search on Google Scholar, PubMed, and Science Direct revealed a total of 467 references, of which 25 were included in this review based on inclusion criteria which comprises 7 in vitro, 16 in vivo, and 2 clinical studies. RESULTS From the studies, LAB treatment alone or in probiotics formulations demonstrated significant neuroprotective activities. In animals and humans, LAB probiotics supplementation has improved memory and cognitive performance mainly via antioxidant and anti-inflammatory pathways. CONCLUSIONS Despite promising findings, due to limited studies available in the literature, further studies still need to be explored regarding synergistic effects, efficacy, and optimum dosage of LAB oral bacteriotherapy as treatment or prevention against neurodegenerative diseases.
Collapse
Affiliation(s)
- Nurliana Abd Mutalib
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia
| | - Sharifah Aminah Syed Mohamad
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Nor Atiqah Jusril
- Faculty Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
| | - Nur Intan Hasbullah
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, Kuala Pilah 72000, Negeri Sembilan, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Selangor, Malaysia
| | - Nor Hadiani Ismail
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| |
Collapse
|
12
|
Extracellular Vesicles as Novel Drug-Delivery Systems through Intracellular Communications. MEMBRANES 2022; 12:membranes12060550. [PMID: 35736256 PMCID: PMC9230693 DOI: 10.3390/membranes12060550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Since it has been reported that extracellular vesicles (EVs) carry cargo using cell-to-cell comminication according to various in vivo situations, they are exprected to be applied as new drug-delivery systems (DDSs). In addition, non-coding RNAs, such as microRNAs (miRNAs), have attracted much attention as potential biomarkers in the encapsulated extracellular-vesicle (EV) form. EVs are bilayer-based lipids with heterogeneous populations of varying sizes and compositions. The EV-mediated transport of contents, which includes proteins, lipids, and nucleic acids, has attracted attention as a DDS through intracellular communication. Many reports have been made on the development of methods for introducing molecules into EVs and efficient methods for introducing them into target vesicles. In this review, we outline the possible molecular mechanisms by which miRNAs in exosomes participate in the post-transcriptional regulation of signaling pathways via cell–cell communication as novel DDSs, especially small EVs.
Collapse
|