1
|
Najar IN, Sharma P, Das R, Tamang S, Mondal K, Thakur N, Gandhi SG, Kumar V. From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121136. [PMID: 38759555 DOI: 10.1016/j.jenvman.2024.121136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Waste of any origin is one of the most serious global and man-made concerns of our day. It causes climate change, environmental degradation, and human health problems. Proper waste management practices, including waste reduction, safe handling, and appropriate treatment, are essential to mitigate these consequences. It is thus essential to implement effective waste management strategies that reduce waste at the source, promote recycling and reuse, and safely dispose of waste. Transitioning to a circular economy with policies involving governments, industries, and individuals is essential for sustainable growth and waste management. The review focuses on diverse kinds of environmental waste sources around the world, such as residential, industrial, commercial, municipal services, electronic wastes, wastewater sewerage, and agricultural wastes, and their challenges in efficiently valorizing them into useful products. It highlights the need for rational waste management, circularity, and sustainable growth, and the potential of a circular economy to address these challenges. The article has explored the role of thermophilic microbes in the bioremediation of waste. Thermophiles known for their thermostability and thermostable enzymes, have emerged to have diverse applications in biotechnology and various industrial processes. Several approaches have been explored to unlock the potential of thermophiles in achieving the objective of establishing a zero-carbon sustainable bio-economy and minimizing waste generation. Various thermophiles have demonstrated substantial potential in addressing different waste challenges. The review findings affirm that thermophilic microbes have emerged as pivotal and indispensable candidates for harnessing and valorizing a range of environmental wastes into valuable products, thereby fostering the bio-circular economy.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu, India
| | - Prayatna Sharma
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | - Rohit Das
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | - Sonia Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | | | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, Gairigaon, Tadong, Gangtok, 737102, Sikkim, India
| | | | - Vinod Kumar
- Fermentation and Microbial Biotechnology Division, CSIR IIIM, Jammu, India.
| |
Collapse
|
2
|
Wang J, Xiang Z, Liu D, Yan Q, Yang S, Jiang Z. Protein Engineering of a Novel β-Galactosidase from Thermus scotoductus for Efficient Synthesis of Lacto- N-Neotetraose from Chitin Powder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38613501 DOI: 10.1021/acs.jafc.4c01149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
A novel β-galactosidase (TsGal48) from Thermus scotoductus was cloned, and the enzyme was biochemically characterized. TsGal48 catalyzed the synthesis of lacto-N-neotetraose (LNnT) from lactose via the transglycosylation reaction with a maximal yield of 20%, which is the highest yield for the synthesis of LNnT so far. To further improve the yield of LNnT, TsGal48 was successfully engineered by directed evolution and site-saturation mutagenesis. A mutated β-galactosidase (mTsGal48) was selected and characterized. mTsGal48 produced LNnT with a yield of 27.7 g/L, which is 1.4-fold higher than that of TsGal48 (19.7 g/L). Then, a developed strategy for LNnT synthesis from chitin powder was provided in a 30 L bioreactor. The reaction process included chitin powder hydrolysis, lacto-N-triose II (LNT2) synthesis, and LNnT synthesis. The reaction time was reduced from 44 to 17 h in chitin powder hydrolysis and LNT2 synthesis. The content of LNnT was up to 25 g/L in the multienzyme system. The green and efficient route may be suitable for large-scale production of LNnT from chitin powder.
Collapse
Affiliation(s)
- Jianyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhixuan Xiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Dan Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
3
|
Zhao D, Liu H, Zhang C, Xiao X, He Z. UV-induced oxidase activity of carbon dots in visible UVA dosage, Escherichia coli quantification and bacterial typing. Anal Chim Acta 2024; 1288:342140. [PMID: 38220275 DOI: 10.1016/j.aca.2023.342140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Ultraviolet (UV) light and foodborne pathogenic bacteriais are an important risk to the environment's safety. They endanger human health, and also lead to outbreaks of infectious disease, posing great threats to global public health security, national economy, and social stability. The appearance of carbon dot (CD) nanozymes offers a new perspective to solve the problems of detection of UV light and pathogenic bacteria in environment. This paper reports the preparation of CDs with dual enzyme-like activities (superoxide dismutase activity and UV-induced oxidase activity). The product can catalyze the oxidation of the substrate 3, 3', 5, 5'-tetramethylbenzidine (TMB) under UV light (365 nm) to achieve rapid color development. Based on the excellent fluorescence properties of CDs, the colorimetric-fluorescence dual-channel real-time detection of UVA dose was realized, the mechanism underlying the catalytic oxidation of TMB by UV-induced oxidase CDs was also investigated. Furthermore, a portable CDs-TMB-PA hydrogel was prepared which could realize the real-time monitoring of UV in outdoor environment with the assistance of smartphone. Based on the pH dependency of the CD nanozymes and specific glycolytic response of the pathogenic bacteria Escherichia coli (E. coli) O157:H7, the direct, simple, quick, and sensitive typing and detection have been realized. This research offers new perspectives for studying CD nanozymes and their applications in UV and bacterial detection, demonstrating the remarkable potential of CD nanozymes in detecting environmental hazards.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Huan Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Changpeng Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
4
|
Addai FP, Wu J, Liu Y, Ma X, Han J, Lin F, Zhou Y, Wang Y. Amorphous-crystalline phase transition and intrinsic magnetic property of nickel organic framework for easy immobilization and recycling of β-Galactosidase. Int J Biol Macromol 2024; 254:127901. [PMID: 37952798 DOI: 10.1016/j.ijbiomac.2023.127901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
This work describes the synthesis of fibrous nickel-based metal organic framework (Ni-ZIF) via simple solvothermal method. The material formed was calcinated at 400, 600, 800 °C to improve its surface area, porosity and enzyme binding capacity. Changes in X-ray diffraction pattern after calcination revealed the Ni-ZIF transitioned from amorphous to crystalline structure. The surface area, pore volume and pore size for Ni-ZIF@600 were found to be 312.15 m2/g, 0.88 cm3/g and 10.28 nm, with an enzyme loading capacity of 593.85 mg/g after 30 h The free (β-Gal-LEH) and immobilized β-Galactosidase were stable at pH 7.5, temperature 50 °C, and yielded 70.70 and 63.95 mM glucose after milk lactose hydrolysis, respectively. The Ni-ZIF@600@β-Gal-LEH exhibited high enzyme retention capacity, maintaining 59.44 % of its original activity after 6-cycles. The enhanced magnetic property, enzyme binding capacity and easy recoverability of the calcinated Ni-ZIF could guarantee its industrial significance as immobilization module for enzyme-mediated catalysis.
Collapse
Affiliation(s)
- Frank Peprah Addai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Jiacong Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yuelin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xinnan Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang Province 313001, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
5
|
Duan X, Luan S. Efficient secreted expression of natural intracellular β-galactosidase from Bacillus aryabhattai via non-classical protein secretion pathway in Bacillus subtilis. Int J Biol Macromol 2023; 248:125758. [PMID: 37453640 DOI: 10.1016/j.ijbiomac.2023.125758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
In this study, the natural intracellular β-galactosidase (lacZBa) from Bacillus aryabhattai was expressed extracellularly in Bacillus subtilis. Sec and Tat signal peptides from different secretion pathways were incorporated to facilitate extracellular secretion of lacZBa, resulting in a yield of only 0.54 U/mL. Interestingly, it was discovered that lacZBa could be efficiently expressed and secreted in B. subtilis via a non-classical secretory pathway without the need for a signal peptide. The extracellular activity and secretion ratio were 5.3 U/mL and 65 %, respectively. Compared to E. coli, the expression of lacZBa in B. subtilis resulted in increased acid resistance and higher pH stability and thermostability, with a 1.7-fold increase in half-life at 50 °C and pH 6.0. Additionally, we combined single-factor experiments and response surface methodology to enhance extracellular expression of β-galactosidase in shake-flasks. The resulting optimal medium contained 4.46 % glucose, 1.47 % corn steep liquor, 1.5 % beef extract, 0.82 % CaCl2, and 0.1 % MgSO4. Under optimal conditions, the yield of extracellularly secreted β-galactosidase at the shake flask level was 17.41 U/mL, representing a 32.2-fold increase in initial extracellular enzyme activity. This study represents the first successful report of natural intracellular β-galactosidase being expressed through the non-classical secretory pathway in B. subtilis.
Collapse
Affiliation(s)
- Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Shuyue Luan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
6
|
Poladyan A, Trchounian K, Paloyan A, Minasyan E, Aghekyan H, Iskandaryan M, Khoyetsyan L, Aghayan S, Tsaturyan A, Antranikian G. Valorization of whey-based side streams for microbial biomass, molecular hydrogen, and hydrogenase production. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12609-x. [PMID: 37289241 DOI: 10.1007/s00253-023-12609-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Side streams of the dairy industry are a suitable nutrient source for cultivating microorganisms, producing enzymes, and high-value chemical compounds. The heterotrophic Escherichia coli and chemolithoautotroph Ralstonia eutropha are of major biotechnological interest. R. eutropha is a model organism for producing O2-tolerant [NiFe]-hydrogenases (Hyds) (biocatalysts), and E. coli has found widespread use as an expression platform for producing recombinant proteins, molecular hydrogen (H2), and other valuable products. Aiming at developing suitable cultivation media from side streams of the dairy industry, the pre-treatment (filtration, dilution, and pH adjustment) of cheese (sweet) whey (SW) and curd (acid) whey (AW), with and without the use of ß-glucosidase, has been performed. Growth parameters (oxidation-reduction potential (ORP), pH changes, specific growth rate, biomass formation) of E. coli BW25113 and R. eutropha H16 type strains were monitored during cultivation on filtered and non-filtered SW and AW at 37 °C, pH 7.5 and 30 °C, pH 7.0, respectively. Along with microbial growth, measurements of pH and ORP indicated good fermentative growth. Compared to growth on fructose-nitrogen minimal salt medium (control), a maximum cell yield (OD600 4.0) and H2-oxidizing Hyd activity were achieved in the stationary growth phase for R. eutropha. Hyd-3-dependent H2 production by E. coli utilizing whey as a growth substrate was demonstrated. Moreover, good biomass production and prolonged H2 yields of ~ 5 mmol/L and cumulative H2 ~ 94 mL g/L dry whey (DW) (ß-glucosidase-treated) were observed during the cultivation of the engineered E. coli strain. These results open new avenues for effective whey treatment using thermostable β-glucosidase and confirm whey as an economically viable commodity for biomass and biocatalyst production. KEY POINTS: • Archaeal thermostable β-glucosidase isolated from the metagenome of a hydrothermal spring was used for lactose hydrolysis in whey. • Hydrogenase enzyme activity was induced during the growth of Ralstonia eutropha H16 on whey. • Enhanced biomass and H2 production was shown in a genetically modified strain of Escherichia coli.
Collapse
Affiliation(s)
- Anna Poladyan
- Department of Biochemistry, Microbiology, and Biotechnology, Yerevan State University, Yerevan, Armenia, 1 A. Manoukian Str, 0025, Yerevan, Armenia.
- Research Institute of Biology, Biology Faculty, Yerevan State University, 0025, Yerevan, Armenia.
| | - Karen Trchounian
- Department of Biochemistry, Microbiology, and Biotechnology, Yerevan State University, Yerevan, Armenia, 1 A. Manoukian Str, 0025, Yerevan, Armenia
- Research Institute of Biology, Biology Faculty, Yerevan State University, 0025, Yerevan, Armenia
| | - Ani Paloyan
- SPC "Armbiotechnology" NAS RA, Yerevan, Armenia
| | - Ela Minasyan
- Institute of Pharmacy, Yerevan State University, 0025, Yerevan, Armenia
| | - Hayarpi Aghekyan
- Department of Biochemistry, Microbiology, and Biotechnology, Yerevan State University, Yerevan, Armenia, 1 A. Manoukian Str, 0025, Yerevan, Armenia
- Research Institute of Biology, Biology Faculty, Yerevan State University, 0025, Yerevan, Armenia
| | - Meri Iskandaryan
- Department of Biochemistry, Microbiology, and Biotechnology, Yerevan State University, Yerevan, Armenia, 1 A. Manoukian Str, 0025, Yerevan, Armenia
- Research Institute of Biology, Biology Faculty, Yerevan State University, 0025, Yerevan, Armenia
| | | | - Sargis Aghayan
- Research Institute of Biology, Biology Faculty, Yerevan State University, 0025, Yerevan, Armenia
| | - Avetis Tsaturyan
- SPC "Armbiotechnology" NAS RA, Yerevan, Armenia
- Institute of Pharmacy, Yerevan State University, 0025, Yerevan, Armenia
| | - Garabed Antranikian
- Hamburg University of Technology, Institute of Technical Biocatalysis, Hamburg, Germany
| |
Collapse
|
7
|
Involvement of Versatile Bacteria Belonging to the Genus Arthrobacter in Milk and Dairy Products. Foods 2023; 12:foods12061270. [PMID: 36981196 PMCID: PMC10048301 DOI: 10.3390/foods12061270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Milk is naturally a rich source of many essential nutrients; therefore, it is quite a suitable medium for bacterial growth and serves as a reservoir for bacterial contamination. The genus Arthrobacter is a food-related bacterial group commonly present as a contaminant in milk and dairy products as primary and secondary microflora. Arthrobacter bacteria frequently demonstrate the nutritional versatility to degrade different compounds even in extreme environments. As a result of their metabolic diversity, Arthrobacter species have long been of interest to scientists for application in various industry and biotechnology sectors. In the dairy industry, strains from the Arthrobacter genus are part of the microflora of raw milk known as an indicator of hygiene quality. Although they cause spoilage, they are also regarded as important strains responsible for producing fermented milk products, especially cheeses. Several Arthrobacter spp. have reported their significance in the development of cheese color and flavor. Furthermore, based on the data obtained from previous studies about its thermostability, and thermoacidophilic and thermoresistant properties, the genus Arthrobacter promisingly provides advantages for use as a potential producer of β-galactosidases to fulfill commercial requirements as its enzymes allow dairy products to be treated under mild conditions. In light of these beneficial aspects derived from Arthrobacter spp. including pigmentation, flavor formation, and enzyme production, this bacterial genus is potentially important for the dairy industry.
Collapse
|
8
|
Kalathinathan P, Sain A, Pulicherla K, Kodiveri Muthukaliannan G. A Review on the Various Sources of β-Galactosidase and Its Lactose Hydrolysis Property. Curr Microbiol 2023; 80:122. [PMID: 36862237 DOI: 10.1007/s00284-023-03220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
β-Galactosidase is a glycoside hydrolase enzyme that possesses both hydrolytic and transgalactosylation properties and has several benefits and advantages in the food and dairy industries. The catalytic process of β-galactosidase involves the transfer of a sugar residue from a glycosyl donor to an acceptor via a double-displacement mechanism. Hydrolysis prevails when water acts as an acceptor, resulting in the production of lactose-free products. Transgalactosylation prevails when lactose acts as an acceptor, resulting in the production of prebiotic oligosaccharides. β-Galactosidase is also obtained from many sources including bacteria, yeast, fungi, plants, and animals. However, depending on the origin of the β-galactosidase, the monomer composition and their bonds may differ, thereby influencing their properties and prebiotic efficacy. Thus, the increasing demand for prebiotics in the food industry and the search for new oligosaccharides have compelled researchers to search for novel sources of β-galactosidase with diverse properties. In this review, we discuss the properties, catalytic mechanisms, various sources and lactose hydrolysis properties of β-galactosidase.
Collapse
Affiliation(s)
- Pooja Kalathinathan
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Avtar Sain
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | | |
Collapse
|
9
|
Wahba MI. Glutaraldehyde-copper gelled chitosan beads: Characterization and utilization as covalent immobilizers. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
10
|
Wang Y, Li C, Ban X, Gu Z, Hong Y, Cheng L, Li Z. Disulfide Bond Engineering for Enhancing the Thermostability of the Maltotetraose-Forming Amylase from Pseudomonas saccharophila STB07. Foods 2022; 11:foods11091207. [PMID: 35563929 PMCID: PMC9105970 DOI: 10.3390/foods11091207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Maltooligosaccharides are a novel type of functional oligosaccharides with potential applications in food processing and can be produced by glycosyl hydrolases hydrolyzing starch. However, the main obstacle in industrial applications is the balance between the high temperature of the process and the stability of enzymes. In this study, based on the structural information and in silico tools (DSDBASE-MODIP, Disulfide by Design2 and FoldX), two disulfide bond mutants (A211C-S214C and S409C-Q412C) of maltotetraose-forming amylase from Pseudomonas saccharophila STB07 (MFAps) were generated to improve its thermostability. The mutation A211C-S214C was closer to the catalytic center and showed significantly improved thermostability with a 2.6-fold improved half-life at 60 °C and the thermal transition mid-point increased by 1.6 °C, compared to the wild-type. However, the thermostability of mutant S409C-Q412C, whose mutation sites are closely to CBM20, did not change observably. Molecular dynamics simulations revealed that both disulfide bonds A211C-S214C and S409C-Q412C rigidified the overall structure of MFAps, however, the impact on thermostability depends on the position and distance from the catalytic center.
Collapse
Affiliation(s)
- Yinglan Wang
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; (Y.W.); (C.L.); (X.B.); (Z.G.); (Y.H.); (L.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; (Y.W.); (C.L.); (X.B.); (Z.G.); (Y.H.); (L.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; (Y.W.); (C.L.); (X.B.); (Z.G.); (Y.H.); (L.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; (Y.W.); (C.L.); (X.B.); (Z.G.); (Y.H.); (L.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; (Y.W.); (C.L.); (X.B.); (Z.G.); (Y.H.); (L.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; (Y.W.); (C.L.); (X.B.); (Z.G.); (Y.H.); (L.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; (Y.W.); (C.L.); (X.B.); (Z.G.); (Y.H.); (L.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-8532-9237
| |
Collapse
|