1
|
Chu YL, Pi JC, Yao YF, Chen XY, Peng XP, Li WJ. Polyphenol (-)-Epigallocatechin Gallate (EGCG) mitigated kidney injury by regulating metabolic homeostasis and mitochondrial dynamics involvement with Drp1-mediated mitochondrial fission in mice. Food Chem Toxicol 2024; 191:114906. [PMID: 39095006 DOI: 10.1016/j.fct.2024.114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The study aimed to examine effects of (-)-epigallocatechin-3-gallate (EGCG) on energy metabolism and mitochondrial dynamics in mouse model of renal injury caused by doxorubicin (DOX). Here, mice were divided into Control group, EGCG-only treated group, DOX group, and three doses of EGCG plus DOX groups. Our results showed that EGCG behaved beneficial effects against kidney injury via attenuation of pathological changes in kidney tissue, which was confirmed by reducing serum creatinine (SCr), blood urea nitrogen (BUN), and apoptosis. Subsequently, changes in reactive oxygen species generation, malondialdehyde content, and activities of antioxidant enzymes were considerably ameliorated in EGCG + DOX groups when compared to DOX group. Furthermore, EGCG-evoked renal protection was associated with increases of mitochondrial membrane potential and decreases of mitochondrial fission protein Dynamin-related protein 1 (Drp1). Moreover, changing glycolysis into mitochondrial oxidative phosphorylation was observed, evidenced by controlling activities of malate dehydrogenase (MDH) and hexokinase (HK) in EGCG + DOX groups when compared to DOX group, indicating that reprogramming energy metabolism was linked to EGCG-induced renal protection in mice. Therefore, EGCG was demonstrated to have a protective effect against kidney injury by reducing oxidative damage, metabolic disorders, and mitochondrial dysfunction, suggesting that EGCG has potential as a feasible strategy to prevent kidney injury.
Collapse
Affiliation(s)
- Yue-Lei Chu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Jin-Chan Pi
- Jinchan Pi, College of Future Technology, Nanchang University, Nanchang, 330031, China
| | - Yu-Fei Yao
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Xuan-Ying Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, 330046, China
| | - Xiao-Ping Peng
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University. Nanchang, 330046, China
| | - Wen-Juan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
2
|
Zhang S, Yang C, Sheng Y, Liu X, Yuan W, Deng X, Li X, Huang W, Zhang Y, Li L, Lv Y, Wang Y, Wang B. A Nomogram Model for Predicting the Polyphenol Content of Pu-Erh Tea. Foods 2023; 12:foods12112128. [PMID: 37297373 DOI: 10.3390/foods12112128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
To investigate different contents of pu-erh tea polyphenol affected by abiotic stress, this research determined the contents of tea polyphenol in teas produced by Yuecheng, a Xishuangbanna-based tea producer in Yunnan Province. The study drew a preliminary conclusion that eight factors, namely, altitude, nickel, available cadmium, organic matter, N, P, K, and alkaline hydrolysis nitrogen, had a considerable influence on tea polyphenol content with a combined analysis of specific altitudes and soil composition. The nomogram model constructed with three variables, altitude, organic matter, and P, screened by LASSO regression showed that the AUC of the training group and the validation group were respectively 0.839 and 0.750, and calibration curves were consistent. A visualized prediction system for the content of pu-erh tea polyphenol based on the nomogram model was developed and its accuracy rate, supported by measured data, reached 80.95%. This research explored the change of tea polyphenol content under abiotic stress, laying a solid foundation for further predictions for and studies on the quality of pu-erh tea and providing some theoretical scientific basis.
Collapse
Affiliation(s)
- Shihao Zhang
- College of Mechanical and Electrical Engineering, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China
| | - Chunhua Yang
- Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yubo Sheng
- China Tea (Yunnan) Co., Ltd., Kunming 650201, China
| | - Xiaohui Liu
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Wenxia Yuan
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xiujuan Deng
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xinghui Li
- International Institute of Tea Industry Innovation for "the Belt and Road", Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Huang
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yinsong Zhang
- College of Foreign Languages, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Li
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yuan Lv
- College of Foreign Languages, Yunnan Agricultural University, Kunming 650201, China
| | - Yuefei Wang
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310013, China
| | - Baijuan Wang
- Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Baranova A, Song Y, Cao H, Yue W, Zhang F. Causal associations of tea intake with COVID-19 infection and severity. Front Nutr 2023; 9:1005466. [PMID: 36687732 PMCID: PMC9848307 DOI: 10.3389/fnut.2022.1005466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023] Open
Abstract
Tea ingredients can effectively inhibit SARS-CoV-2 infection at adequate concentrations. It is not known whether tea intake could impact the susceptibility to COVID-19 or its severity. We aimed to evaluate the causal effects of tea intake on COVID-19 outcomes. We performed Mendelian randomization (MR) analyses to assess the causal associations between tea intake (N = 441,279) and three COVID-19 outcomes, including SARS-CoV-2 infection (122,616 cases and 2,475,240 controls), hospitalized COVID-19 (32,519 cases and 2,062,805 controls), and critical COVID-19 (13,769 cases and 1,072,442 controls). The MR analyses indicated that genetic propensity for tea consumption conferred a negative causal effect on the risk of SARS-CoV-2 infection (OR: 0.87, 95% confidence interval (CI): 0.78-0.97, P = 0.015). No causal effects on hospitalized COVID-19 (0.84, 0.64-1.10, P = 0.201) or critical COVID-19 (0.73, 0.51-1.03, P = 0.074) were detected. Our study revealed that tea intake could decrease the risk of SARS-CoV-2 infection, highlighting the potential preventive effect of tea consumption on COVID-19 transmission.
Collapse
Affiliation(s)
- Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, United States,Research Centre for Medical Genetics, Moscow, Russia
| | - Yuqing Song
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China,NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China,NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China,Chinese Institute for Brain Research, Beijing, China
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China,Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Fuquan Zhang ✉
| |
Collapse
|
4
|
Zhou B, Pang X, Wu J, Liu T, Wang B, Cao H. Gut microbiota in COVID-19: new insights from inside. Gut Microbes 2023; 15:2201157. [PMID: 37078497 PMCID: PMC10120564 DOI: 10.1080/19490976.2023.2201157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
The epidemic of coronavirus disease-19 (COVID-19) has grown to be a global health threat. Gastrointestinal symptoms are thought to be common clinical manifestations apart from a series of originally found respiratory symptoms. The human gut harbors trillions of microorganisms that are indispensable for complex physiological processes and homeostasis. Growing evidence demonstrate that gut microbiota alteration is associated with COVID-19 progress and severity, and post-COVID-19 syndrome, characterized by decrease of anti-inflammatory bacteria like Bifidobacterium and Faecalibacterium and enrichment of inflammation-associated microbiota including Streptococcus and Actinomyces. Therapeutic strategies such as diet, probiotics/prebiotics, herb, and fecal microbiota transplantation have shown positive effects on relieving clinical symptoms. In this article, we provide and summarize the recent evidence about the gut microbiota and their metabolites alterations during and after COVID-19 infection and focus on potential therapeutic strategies targeting gut microbiota. Understanding the connections between intestinal microbiota and COVID-19 would provide new insights into COVID-19 management in the future.
Collapse
Affiliation(s)
- Bingqian Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingyi Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
5
|
Now and future: Development and perspectives of using polyphenol nanomaterials in environmental pollution control. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Ngo TV, Kusumawardani S, Kunyanee K, Luangsakul N. Polyphenol-Modified Starches and Their Applications in the Food Industry: Recent Updates and Future Directions. Foods 2022; 11:3384. [PMID: 36359996 PMCID: PMC9658643 DOI: 10.3390/foods11213384] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 07/25/2023] Open
Abstract
Health problems associated with excess calories, such as diabetes and obesity, have become serious public issues worldwide. Innovative methods are needed to reduce food caloric impact without negatively affecting sensory properties. The interaction between starch and phenolic compounds has presented a positive impact on health and has been applied to various aspects of food. In particular, an interaction between polyphenols and starch is widely found in food systems and may endow foods with several unique properties and functional effects. This review summarizes knowledge of the interaction between polyphenols and starch accumulated over the past decade. It discusses changes in the physicochemical properties, in vitro digestibility, prebiotic properties, and antioxidant activity of the starch-polyphenol complex. It also reviews innovative methods of obtaining the complexes and their applications in the food industry. For a brief description, phenolic compounds interact with starch through covalent or non-covalent bonds. The smoothness of starch granules disappears after complexation, while the crystalline structure either remains unchanged or forms a new structure and/or V-type complex. Polyphenols influence starch swelling power, solubility, pasting, and thermal properties; however, research remains limited regarding their effects on oil absorption and freeze-thaw stability. The interaction between starch and polyphenolic compounds could promote health and nutritional value by reducing starch digestion rate and enhancing bioavailability; as such, this review might provide a theoretical basis for the development of novel functional foods for the prevention and control of hyperglycemia. Further establishing a comprehensive understanding of starch-polyphenol complexes could improve their application in the food industry.
Collapse
Affiliation(s)
| | | | | | - Naphatrapi Luangsakul
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
7
|
Zhai Z, Huang Y, Zhang Y, Zhao L, Li W. Clinical Research Progress of Small Molecule Compounds Targeting Nrf2 for Treating Inflammation-Related Diseases. Antioxidants (Basel) 2022; 11:1564. [PMID: 36009283 PMCID: PMC9405369 DOI: 10.3390/antiox11081564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Studies have found that inflammation is a symptom of various diseases, such as coronavirus disease 2019 (COVID-19) and rheumatoid arthritis (RA); it is also the source of other diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), lupus erythematosus (LE), and liver damage. Nrf2 (nuclear factor erythroid 2-related factor 2) is an important multifunctional transcription factor in cells and plays a central regulatory role in cellular defense mechanisms. In recent years, several studies have found a strong association between the activation of Nrf2 and the fight against inflammation-related diseases. A number of small molecule compounds targeting Nrf2 have entered clinical research. This article reviews the research status of small molecule compounds that are in clinical trials for the treatment of COVID-19, rheumatoid arthritis, Alzheimer's disease, Parkinson's disease, lupus erythematosus, and liver injury.
Collapse
Affiliation(s)
- Zhenzhen Zhai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanxin Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yawei Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, China
| |
Collapse
|
8
|
Role of Nuclear Factor Erythroid 2 (Nrf2) in the Recovery of Long COVID-19 Using Natural Antioxidants: A Systematic Review. Antioxidants (Basel) 2022; 11:antiox11081551. [PMID: 36009268 PMCID: PMC9405009 DOI: 10.3390/antiox11081551] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease with approximately 517 million confirmed cases, with the average number of cases revealing that patients recover immediately without hospitalization. However, several other cases found that patients still experience various symptoms after 3–12 weeks, which is known as a long COVID syndrome. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can activate nuclear factor kappa beta (NF-κβ) and unbind the nuclear factor erythroid 2-related factor 2 (Nrf2) with Kelch-like ECH-associated protein 1 (Keap1), causing inhibition of Nrf2, which has an important role in antioxidant response and redox homeostasis. Disrupting the Keap1–Nrf2 pathway enhances Nrf2 activity, and has been identified as a vital approach for the prevention of oxidative stress and inflammation. Hence, natural antioxidants from various sources have been identified as a promising strategy to prevent oxidative stress, which plays a role in reducing the long COVID-19 symptoms. Oxygen-rich natural antioxidant compounds provide an effective Nrf2 activation effect that interact with the conserved amino acid residues in the Keap1-binding pocket, such as Ser602, Ser363, Ser508, and Ser555. In this review, the benefits of various natural antioxidant compounds that can modulate the Nrf2 signaling pathway, which is critical in reducing and curing long COVID-19, are highlighted and discussed.
Collapse
|
9
|
The Concept of Intrauterine Programming and the Development of the Neonatal Microbiome in the Prevention of SARS-CoV-2 Infection. Nutrients 2022; 14:nu14091702. [PMID: 35565670 PMCID: PMC9104449 DOI: 10.3390/nu14091702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
The process of intrauterine programming is related to the quality of the microbiome formed in the fetus and the newborn. The implementation of probiotics, prebiotics, and psychobiotics shows immunomodulatory potential towards the organism, especially the microbiome of the pregnant woman and her child. Nutrigenomics, based on the observation of pregnant women and the developing fetus, makes it possible to estimate the biological effects of active dietary components on gene expression or silencing. Nutritional intervention for pregnant women should consider the nutritional status of the patient, biological markers, and the potential impact of dietary intervention on fetal physiology. The use of a holistic model of nutrition allows for appropriately targeted and effective dietary prophylaxis that can impact the physical and mental health of both the mother and the newborn. This model targets the regulation of the immune response of the pregnant woman and the newborn, considering the clinical state of the microbiota and the pathomechanism of the nervous system. Current scientific reports indicate the protective properties of immunobiotics (probiotics) about the reduction of the frequency of infections and the severity of the course of COVID-19 disease. The aim of this study was to test the hypothesis that intrauterine programming influences the development of the microbiome for the prevention of SARS-CoV-2 infection based on a review of research studies.
Collapse
|