1
|
Zagorska J, Ruska D, Radenkovs V, Juhnevica-Radenkova K, Kince T, Galoburda R, Gramatina I. The Impact of Biotechnologically Produced Lactobionic Acid on Laying Hens' Productivity and Egg Quality during Early Laying Period. Animals (Basel) 2024; 14:2966. [PMID: 39457896 PMCID: PMC11506111 DOI: 10.3390/ani14202966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Lactobionic acid (Lba), an oligosaccharide aldonic acid, has demonstrated various health-promoting benefits and applications in diverse areas. Lba has been recognized for its multifunctional properties, such as metal ion chelation and calcium sequestration. This study aimed to evaluate the effects of supplementing the diet of early-laying hens with Lba (EXP group) on their performance and the physical-chemical properties, and nutritional quality of eggs. The 12-week study involved 700 Sonja breed hens per group, with the EXP group's diet enriched with 2% of biotechnologically produced Lba, while the control group (CON) received no Lba supplementation. Lba supplementation influenced both the hen's performance and egg quality, particularly in terms of egg production and fatty acid accumulation. Performance in the EXP group was significantly improved (p < 0.05), showing a 4.6-8.9% increase compared to the CON group at all experiment stages. Lba also promoted an increase in monounsaturated fatty acid (MUFA) content, particularly palmitoleic and vaccenic acids. Overall, Lba supplementation enhanced both the productivity of laying hens and the nutritional value of eggs during the early laying period.
Collapse
Affiliation(s)
- Jelena Zagorska
- Food Institute, Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (J.Z.); (T.K.); (I.G.)
| | - Diana Ruska
- Institute of Animal Sciences, Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia;
| | - Vitalijs Radenkovs
- Processing and Biochemistry Department, Institute of Horticulture, LV-3701 Dobele, Latvia;
- Research Laboratory of Biotechnology, Division of Smart Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | | | - Tatjana Kince
- Food Institute, Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (J.Z.); (T.K.); (I.G.)
| | - Ruta Galoburda
- Food Institute, Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (J.Z.); (T.K.); (I.G.)
| | - Ilze Gramatina
- Food Institute, Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (J.Z.); (T.K.); (I.G.)
| |
Collapse
|
2
|
Bieringer E, García Vázquez U, Klein L, Moretó Bravo N, Tobler M, Weuster-Botz D. Bioproduction and applications of aldobionic acids with a focus on maltobionic and cellobionic acid. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02872-7. [PMID: 37058246 DOI: 10.1007/s00449-023-02872-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023]
Abstract
Aldobionic acids are sugar acids which consist of a disaccharide with an anomeric acid group. The most famous is lactobionic acid (LBA). LBA is used in many applications such as food and beverages, pharmaceuticals and medicine, cosmetics or chemical processes. During the last decade, all these industries are observing a shift of consumer preferences towards plant-based options. Thus, the biotechnological industry is trying to replace the animal-derived LBA. Maltobionic acid (MBA) and cellobionic acid (CBA) are two stereoisomers of LBA which have emerged as vegan alternatives. However, MBA and CBA face different obstacles related to their industrial production. While traditionally used electrochemical or chemical catalysis often rely on cost intensive and/or hazardous catalysts, novel production methods with microorganisms are still poorly studied. In the first part, this paper discusses both alternatives in terms of their characteristics and applications. In the second part, it reviews the long-studied chemical production and the novel bioproduction methods, which are based on enzymatic and microbial systems. This review concludes with a discussion of future work needed to bring their production to the industrial scale.
Collapse
Affiliation(s)
- Emmeran Bieringer
- TUM School of Engineering and Design, Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Uxía García Vázquez
- TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Luisa Klein
- TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Núria Moretó Bravo
- TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Matthias Tobler
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Dirk Weuster-Botz
- TUM School of Engineering and Design, Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany.
| |
Collapse
|
3
|
Agwa MM, Elmotasem H, Elsayed H, Abdelsattar AS, Omer AM, Gebreel DT, Mohy-Eldin MS, Fouda MMG. Carbohydrate ligands-directed active tumor targeting of combinatorial chemotherapy/phototherapy-based nanomedicine: A review. Int J Biol Macromol 2023; 239:124294. [PMID: 37004933 DOI: 10.1016/j.ijbiomac.2023.124294] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Phototherapies or light mediated therapies, including mutually photothermal and photodynamic therapy that encompass irradiation of the target organs with light, have been widely employed as minimally invasive approach associated with negligible drug resistance for eradicating multiple tumors with minimal hazards to normal organs. Despite all these advantages, many obstacles in phototherapy hinder progress toward clinical application. Therefore, researchers have developed nano-particulate delivery systems integrated with phototherapy and therapeutic cytotoxic drugs to overcome these obstacles and achieve maximum efficacy in cancer treatment. Active targeting ligands were integrated into their surfaces to improve the selectivity and tumor targeting ability, enabling easy binding and recognition by cellular receptors overexpressed on the tumor tissue compared to normal ones. This enhances intratumoral accumulation with minimal toxicity on the adjacent normal cells. Various active targeting ligands, including antibodies, aptamers, peptides, lactoferrin, folic acid and carbohydrates, have been explored for the targeted delivery of chemotherapy/phototherapy-based nanomedicine. Among these ligands, carbohydrates have been applied due to their unique features that ameliorate the bioadhesive, noncovalent conjugation to biological tissues. In this review, the up-to-date techniques of employing carbohydrates active targeting ligands will be highlighted concerning the surface modification of the nanoparticles for ameliorating the targeting ability of the chemo/phototherapy.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Behooth St., Dokki, Giza 12622, Egypt.
| | - Heba Elmotasem
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Behooth St., Dokki, Giza 12622, Egypt
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt; Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Doaa T Gebreel
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Moustafa M G Fouda
- Pre-Treatment and Finishing of Cellulosic Fabric Department, Textile Research and Technology Institute (TRT), National Research Center, 33 El-Behooth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
4
|
Ruska D, Radenkovs V, Juhnevica-Radenkova K, Rubene D, Ciprovica I, Zagorska J. The Impact of Biotechnologically Produced Lactobionic Acid in the Diet of Lactating Dairy Cows on Their Performance and Quality Traits of Milk. Animals (Basel) 2023; 13:815. [PMID: 36899672 PMCID: PMC10000126 DOI: 10.3390/ani13050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Dairy processing is one of the most polluting sectors of the food industry as it causes water pollution. Given considerable whey quantities obtained via traditional cheese and curd production methods, manufacturers worldwide are encountering challenges for its rational use. However, with the advancement in biotechnology, the sustainability of whey management can be fostered by applying microbial cultures for the bioconversion of whey components such as lactose to functional molecules. The present work was undertaken to demonstrate the potential utilization of whey for producing a fraction rich in lactobionic acid (Lba), which was further used in the dietary treatment of lactating dairy cows. The analysis utilizing high-performance liquid chromatography with refractive index (HPLC-RID) detection confirmed the abundance of Lba in biotechnologically processed whey, corresponding to 11.3 g L-1. The basic diet of two dairy cow groups involving nine animals, Holstein Black and White or Red breeds in each, was supplemented either with 1.0 kg sugar beet molasses (Group A) or 5.0 kg of the liquid fraction containing 56.5 g Lba (Group B). Overall, the use of Lba in the diet of dairy cows during the lactation period equal to molasses affected cows' performances and quality traits, especially fat composition. The observed values of urea content revealed that animals of Group B and, to a lesser extent, Group A received a sufficient amount of proteins, as the amount of urea in the milk decreased by 21.7% and 35.1%, respectively. After six months of the feeding trial, a significantly higher concentration of essential amino acids (AAs), i.e., isoleucine and valine, was observed in Group B. The percentage increase corresponded to 5.8% and 3.3%, respectively. A similar trend of increase was found for branched-chain AAs, indicating an increase of 2.4% compared with the initial value. Overall, the content of fatty acids (FAs) in milk samples was affected by feeding. Without reference to the decrease in individual FAs, the higher values of monounsaturated FAs (MUFAs) were achieved via the supplementation of lactating cows' diets with molasses. In contrast, the dietary inclusion of Lba in the diet promoted an increase in saturated FA (SFA) and polyunsaturated FA (PUFA) content in the milk after six months of the feeding trial.
Collapse
Affiliation(s)
- Diana Ruska
- Faculty of Agriculture, Institute of Animal Sciences, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
| | - Vitalijs Radenkovs
- Division of Smart Technologies, Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
- Processing and Biochemistry Department, Institute of Horticulture, LV-3701 Dobele, Latvia
| | | | - Daina Rubene
- Division of Agronomic Analysis, Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3002 Jelgava, Latvia
| | - Inga Ciprovica
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Jelena Zagorska
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| |
Collapse
|
5
|
Zagorska J, Degola L, Strazdins I, Gramatina I, Kince T, Galoburda R. Effects of Lactobionic Acid on Pig Growth Performance and Chemical Composition of Pork. Animals (Basel) 2022; 12:1138. [PMID: 35565564 PMCID: PMC9104116 DOI: 10.3390/ani12091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Lactobionic acid is an innovative product obtained in the fermentation process of cheese or curd whey, and it has several beneficial properties. Therefore, it may have potential application in animal feeding. Currently, lactobionic acid is not widely used yet in feeding farm animals. Therefore, the aim of our study was to evaluate the effect of lactobionic acid (LBA) on pig growth performance and pork quality. Two groups of pigs (control and trial, 26 piglets each) were completed. The control group received compound feed, whereas the trial group's feed was supplemented with LBA (0.17 kg per 100 kg of feed). Carcass weight and meat pH were determined. The subcutaneous fat layer S (mm) was measured. Lean meat content was determined using the SEUROP classification. Amino acids and fatty acids in pork were evaluated. The addition of LBA to pig feed significantly increased the live weight gain and slaughter yield of pigs, but the samples had a slightly thicker backfat layer. Results obtained showed higher concentration of amino acids in the trial group but slightly lower pork fat quality in the same group. Lactobionic acid has the potential for applications in pig feeding.
Collapse
Affiliation(s)
- Jelena Zagorska
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Rigas Street 22, LV-3004 Jelgava, Latvia; (I.G.); (T.K.); (R.G.)
| | - Lilija Degola
- Faculty of Agriculture, Latvia University of Life Sciences and Technologies, Liela Street 2, LV-3001 Jelgava, Latvia;
| | | | - Ilze Gramatina
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Rigas Street 22, LV-3004 Jelgava, Latvia; (I.G.); (T.K.); (R.G.)
| | - Tatjana Kince
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Rigas Street 22, LV-3004 Jelgava, Latvia; (I.G.); (T.K.); (R.G.)
| | - Ruta Galoburda
- Faculty of Food Technology, Latvia University of Life Sciences and Technologies, Rigas Street 22, LV-3004 Jelgava, Latvia; (I.G.); (T.K.); (R.G.)
| |
Collapse
|