1
|
Xhaferaj M, Scherf KA. Gluten Is Not Gluten. Nutrients 2024; 16:2745. [PMID: 39203881 PMCID: PMC11357231 DOI: 10.3390/nu16162745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Wheat gluten is responsible for the unique baking properties of wheat flour, but it also causes wheat-related disorders in predisposed individuals. Different commercially available gluten materials are commonly used for a variety of assays, but a detailed characterization of their composition is missing in many cases. This is why we aimed to provide an in-depth analysis of three commonly used gliadin and gluten materials from two different batches using gel electrophoretic and chromatographic techniques. The gliadin material did not show the typical qualitative and quantitative protein composition and does not appear to be representative of wheat gliadin. The two gluten materials had the expected protein composition, but both showed large batch-to-batch variability regarding total protein content. Since these variations result in different biochemical, immunological, and functional behaviors, it is important to analyze at least the total protein content of each material and each batch.
Collapse
Affiliation(s)
- Majlinda Xhaferaj
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Katharina Anne Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
- Professorship of Food Biopolymer Systems, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
2
|
Garcia-Calvo E, García-García A, Rodríguez S, Martín R, García T. Exploring Gluten Assessment in Marketed Products through a Sandwich ELISA Methodology Based on Novel Recombinant Antibodies. Foods 2024; 13:1341. [PMID: 38731712 PMCID: PMC11083168 DOI: 10.3390/foods13091341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This study presents the development of a sandwich ELISA method for gluten detection in foods, using recombinant Fab antibody fragments against gliadin. The Fabs were chemically biotinylated and immobilized on streptavidin-coated plates as capture antibodies, while alkaline phosphatase-conjugated Fabs were used as detection antibodies. Four different gliadin-binding Fabs were tested and the Fab pair Fab8E-4 and Fab-C showed the best compatibility. An indirect sandwich immunoassay, using unmodified Fab8E-4 for capture and Fab-C as the detection antibody, achieved a detection limit of 26 ng/mL of gliadin, corresponding to 10 mg/kg of gluten in foods. No cross-reactivity was observed against 60 gluten-free species commonly used in the food industry. Analysis of 50 commercial products demonstrated consistent results compared to the standard method for gluten detection. The complete lack of cross-reactivity of the developed immunoassay with oat products potentially provides an advantage over other gluten detection systems.
Collapse
Affiliation(s)
| | - Aina García-García
- Department of Nutrition and Food Sciences, School of Veterinary Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.G.-C.); (S.R.); (R.M.); (T.G.)
| | | | | | | |
Collapse
|
3
|
Guzmán-López MH, Ruipérez V, Marín-Sanz M, Ojeda-Fernández I, Ojeda-Fernández P, Garrote-Adrados JA, Arranz-Sanz E, Barro F. Identification of RNAi hypoallergic bread wheat lines for wheat-dependent exercise-induced anaphylaxis patients. Front Nutr 2024; 10:1319888. [PMID: 38292700 PMCID: PMC10824911 DOI: 10.3389/fnut.2023.1319888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Wheat-dependent exercise-induced anaphylaxis (WDEIA) is one of the most severe forms of wheat allergy. It occurs in patients when they exercise after ingesting wheat-containing foods. Nowadays, the only possible alternative for WDEIA patients is to avoid such foods. This study investigated the potential of six RNA of interference (RNAi) wheat lines with low-prolamin content as alternatives for WDEIA patients. For that purpose, a high performance-liquid chromatography (HPLC) analysis was performed to evaluate differences in gluten protein fractions among these lines. Next, western blots were conducted to measure the immunoglobulin E (IgE) reactivity to wheat proteins in sera from five WDEIA patients. Additionally, monoclonal antibodies (moAb) recognition sites and the IgE binding sites were searched in all peptides identified by LC-MS/MS after protein digestion. The results showed a 61.4%-81.2% reduction in the gliadin content of the RNAi lines, accompanied by an increase in their high-molecular weight (HMW) glutenin content compared to the wild type bread wheat line (WT). In all cases, the reduction in gliadin content correlated with a decrease in IgE reactivity observed in the sera of WDEIA patients, highlighting the E82 and H320 lines. These two RNAi lines exhibited a ≤90% reduction in IgE reactivity. This reduction could be attributed to an absence of IgE binding sites associated with α- and ω5-gliadins, which were present in the WT. Overall, these lines offer a potential alternative for foodstuff for individuals with WDEIA.
Collapse
Affiliation(s)
- María H. Guzmán-López
- Functional Genomics Laboratory, Plant Breeding Department, Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), Córdoba, Spain
| | - Violeta Ruipérez
- College of Agricultural Engineering, University of Valladolid, Palencia, Spain
| | - Miriam Marín-Sanz
- Functional Genomics Laboratory, Plant Breeding Department, Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), Córdoba, Spain
| | | | | | - José Antonio Garrote-Adrados
- Excellence Unit, Institute of Biology and Molecular Genetics, University of Valladolid—Spanish National Research Council (CSIC), Valladolid, Spain
| | - Eduardo Arranz-Sanz
- Excellence Unit, Institute of Biology and Molecular Genetics, University of Valladolid—Spanish National Research Council (CSIC), Valladolid, Spain
| | - Francisco Barro
- Functional Genomics Laboratory, Plant Breeding Department, Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), Córdoba, Spain
| |
Collapse
|
4
|
Xhaferaj M, Muskovics G, Schall E, Bugyi Z, Tömösközi S, Scherf KA. Development of a barley reference material for gluten analysis. Food Chem 2023; 424:136414. [PMID: 37236081 PMCID: PMC10282984 DOI: 10.1016/j.foodchem.2023.136414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Celiac disease (CD) can be triggered in susceptible individuals by the consumption of gluten, a complex storage protein mixture present in wheat, rye and barley. There is no specific reference material (RM) available for barley and this leads to inaccurate quantitation of barley gluten in supposedly gluten-free foods. Therefore, the aim was to select representative barley cultivars to establish a new barley RM. The relative protein composition of the 35 barley cultivars averaged 25% albumins and globulins, 11% d-hordeins, 19% C-hordeins, and 45% B/γ-hordeins. The mean gluten and protein content was 7.2 g/100 g and 11.2 g/100 g, respectively. The prolamin/glutelin ratio (1:1) commonly used in ELISAs to calculate the gluten content was found to be inappropriate for barley (1.6 ± 0.6). Eight cultivars suitable as potential RMs were selected to ensure a typical barley protein composition and improve food safety for CD patients.
Collapse
Affiliation(s)
- Majlinda Xhaferaj
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences, Department of Bioactive and Functional Food Chemistry, Karlsruhe, Germany
| | - Gabriella Muskovics
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest, Hungary
| | - Eszter Schall
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest, Hungary
| | - Zsuzsanna Bugyi
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest, Hungary
| | - Sándor Tömösközi
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Research Group of Cereal Science and Food Quality, Budapest, Hungary
| | - Katharina A Scherf
- Karlsruhe Institute of Technology (KIT), Institute of Applied Biosciences, Department of Bioactive and Functional Food Chemistry, Karlsruhe, Germany.
| |
Collapse
|
5
|
Liu S, El Khoury D, Joye IJ. Gluten-Free Product Recalls and Their Impact on Consumer Trust. Nutrients 2023; 15:4170. [PMID: 37836454 PMCID: PMC10574315 DOI: 10.3390/nu15194170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The range of gluten-free food products available to consumers is steadily expanding. In recent years, recalls of food products have highlighted the importance of accurate labeling of food products for the presence of wheat, other gluten-containing cereals, or gluten itself as refined ingredient. The purpose of this study was to gain more insights into recent food recalls related to undeclared gluten/wheat contamination and consumer experiences with these recalls. Recalls of products triggered by gluten contamination are relatively scarce and are not often triggered by a consumer complaint. The impact of these recalls on consumer trust was evaluated through an online survey that was distributed among supporters of Celiac Canada (CCA) and covered (i) strategies to adhere to a gluten-free diet, (ii) experiences with gluten-free recalls and their impact on consumer trust, and (iii) demographic information. Consumer concern regarding gluten-free product recalls is significant, but the concern regarding recalls is not heightened after experiencing a recall. Companies pursuing transparency in the process, identification of the source of contamination, and mitigation strategies going forward are likely to retain consumer trust in their product and brand. Based on the survey results, further efforts focusing on consumer education regarding interpreting nutrient labels, identifying sources of information on product recalls, and understanding procedures to follow upon suspected gluten contamination of a gluten-free product are recommended.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON N1G2W1, Canada;
| | - Dalia El Khoury
- Department of Family Relations and Applied Nutrition, University of Guelph, 50 Stone Road East, Guelph, ON N1G2W1, Canada;
| | - Iris J. Joye
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON N1G2W1, Canada;
| |
Collapse
|
6
|
Garcia-Calvo E, García-García A, Rodríguez S, Takkinen K, Martín R, García T. Production and Characterization of Novel Fabs Generated from Different Phage Display Libraries as Probes for Immunoassays for Gluten Detection in Food. Foods 2023; 12:3274. [PMID: 37685207 PMCID: PMC10486584 DOI: 10.3390/foods12173274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Gluten is the main fraction of wheat proteins. It is widely used in the food industry because of the properties that are generated in the dough, but it is also able to trigger diseases like allergies, autoimmunity processes (such as celiac disease), and intolerances in sensitized persons. The most effective therapy for these diseases is the total avoidance of gluten in the diet because it not only prevents damage but also enhances tissue healing. To ensure the absence of gluten in food products labeled as gluten-free, accurate detection systems, like immunoassays, are required. In this work, four recombinant Fab antibody fragments, selected by phage display technology, were produced and tested for specificity and accuracy against gluten in experimental flour mixtures and commercial food products. A high-affinity probe (Fab-C) was identified and characterized. An indirect ELISA test was developed based on Fab-C that complied with the legal detection limits and could be applied in the assessment of gluten-free diets.
Collapse
Affiliation(s)
- Eduardo Garcia-Calvo
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.G.-C.); (S.R.); (R.M.); (T.G.)
| | - Aina García-García
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.G.-C.); (S.R.); (R.M.); (T.G.)
| | - Santiago Rodríguez
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.G.-C.); (S.R.); (R.M.); (T.G.)
| | - Kristiina Takkinen
- Biosensors Team, VTT Technical Research Center of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland;
| | - Rosario Martín
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.G.-C.); (S.R.); (R.M.); (T.G.)
| | - Teresa García
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.G.-C.); (S.R.); (R.M.); (T.G.)
| |
Collapse
|
7
|
Liu M, Huang J, Ma S, Yu G, Liao A, Pan L, Hou Y. Allergenicity of wheat protein in diet: Mechanisms, modifications and challenges. Food Res Int 2023; 169:112913. [PMID: 37254349 DOI: 10.1016/j.foodres.2023.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely available in people's daily diets. However, some people are currently experiencing IgE-mediated allergic reactions to wheat-based foods, which seriously impact their quality of life. Thus, it is imperative to provide comprehensive knowledge and effective methods to reduce the risk of wheat allergy (WA) in food. In the present review, recent advances in WA symptoms, the major allergens, detection methods, opportunities and challenges in establishing animal models of WA are summarized and discussed. Furthermore, an updated overview of the different modification methods that are currently being applied to wheat-based foods is provided. This study concludes that future approaches to food allergen detection will focus on combining multiple tools to rapidly and accurately quantify individual allergens in complex food matrices. Besides, biological modification has many advantages over physical or chemical modification methods in the development of hypoallergenic wheat products, such as enzymatic hydrolysis and fermentation. It is worth noting that using biotechnology to edit wheat allergen genes to produce allergen-free food may be a promising method in the future which could improve the safety of wheat foods and the health of allergy sufferers.
Collapse
Affiliation(s)
- Ming Liu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jihong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, PR China; School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Guanghai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Aimei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, PR China
| |
Collapse
|
8
|
Haro C, Guzmán-López MH, Marín-Sanz M, Sánchez-León S, Vaquero L, Pastor J, Comino I, Sousa C, Vivas S, Landa BB, Barro F. Consumption of Tritordeum Bread Reduces Immunogenic Gluten Intake without Altering the Gut Microbiota. Foods 2022; 11:foods11101439. [PMID: 35627010 PMCID: PMC9142130 DOI: 10.3390/foods11101439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 12/04/2022] Open
Abstract
Gluten proteins are responsible for the wheat breadmaking quality. However, gluten is also related to human pathologies for which the only treatment is a gluten-free diet (GFD). GFD has gained popularity among individuals who want to reduce their gluten intake. Tritordeum is a cereal species that originated after crossing durum wheat with wild barley and differs from bread wheat in its gluten composition. In this work, we have characterized the immunogenic epitopes of tritordeum bread and results from a four-phase study with healthy adults for preferences of bread and alterations in the gut microbiota after consuming wheat bread, gluten-free bread, and tritordeum bread are reported. Tritordeum presented fewer peptides related to gluten proteins, CD-epitopes, and IgE binding sites than bread wheat. Participants rated tritordeum bread higher than gluten-free bread. Gut microbiota analysis revealed that the adherence to a strict GFD involves some minor changes, especially altering the species producing short-chain fatty acids. However, the short-term consumption of tritordeum bread does not induce significant changes in the diversity or community composition of the intestinal microbiota in healthy individuals. Therefore, tritordeum bread could be an alternative for healthy individuals without wheat-related pathologies who want to reduce their gluten consumption without harming their gut health.
Collapse
Affiliation(s)
- Carmen Haro
- Department of Crop Protection, Institute for Sustainable Agriculture—Spanish National Research Council (IAS—CSIC), 14004 Córdoba, Spain; (C.H.); (B.B.L.)
| | - María H. Guzmán-López
- Department of Plant Breeding, Institute for Sustainable Agriculture—Spanish National Research Council (IAS—CSIC), 14004 Córdoba, Spain; (M.M.-S.); (S.S.-L.)
- Correspondence: (M.H.G.-L.); (F.B.)
| | - Miriam Marín-Sanz
- Department of Plant Breeding, Institute for Sustainable Agriculture—Spanish National Research Council (IAS—CSIC), 14004 Córdoba, Spain; (M.M.-S.); (S.S.-L.)
| | - Susana Sánchez-León
- Department of Plant Breeding, Institute for Sustainable Agriculture—Spanish National Research Council (IAS—CSIC), 14004 Córdoba, Spain; (M.M.-S.); (S.S.-L.)
| | - Luis Vaquero
- Department of Gastroenterology, Hospital of León, Biomedicine Institute, University of León, 24071 León, Spain; (L.V.); (S.V.)
| | - Jorge Pastor
- Novapan, S.L., C/Chopo, 68-70, 50171 La Puebla de Alfinden, Spain;
| | - Isabel Comino
- Department of Microbiology and Parasitology, Pharmacy Faculty, University of Seville, 41004 Seville, Spain; (I.C.); (C.S.)
| | - Carolina Sousa
- Department of Microbiology and Parasitology, Pharmacy Faculty, University of Seville, 41004 Seville, Spain; (I.C.); (C.S.)
| | - Santiago Vivas
- Department of Gastroenterology, Hospital of León, Biomedicine Institute, University of León, 24071 León, Spain; (L.V.); (S.V.)
| | - Blanca B. Landa
- Department of Crop Protection, Institute for Sustainable Agriculture—Spanish National Research Council (IAS—CSIC), 14004 Córdoba, Spain; (C.H.); (B.B.L.)
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture—Spanish National Research Council (IAS—CSIC), 14004 Córdoba, Spain; (M.M.-S.); (S.S.-L.)
- Correspondence: (M.H.G.-L.); (F.B.)
| |
Collapse
|