1
|
Olalere OA, Guler F, Chuck CJ, Leese HS, Castro-Dominguez B. Mechanochemical extraction of edible proteins from moor grass. RSC MECHANOCHEMISTRY 2024; 1:375-385. [PMID: 39263416 PMCID: PMC11388976 DOI: 10.1039/d4mr00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/11/2024] [Indexed: 09/13/2024]
Abstract
Extracting edible nutrient-rich food fractions from unconventional sources, such as grass, could play a pivotal role in ensuring food security, bolstering economic prosperity, combating climate change, and enhancing overall quality of life. Current extraction techniques rely heavily on harsh chemicals, which not only degrade nutrients but can also substantially add to the cost of the process and make downstream separation challenging. In this study, we harnessed a mechanochemical process, liquid-assisted grinding (LAG) with and without Na2CO3, termed sodium carbonate assisted grinding (SAG), to extract the protein fraction from moor grass. These techniques were compared to the conventional alkaline extraction (AE) method. Unlike alkaline extraction, which solubilized over 70% of the material, the mechanochemical approach using Na2CO3 solubilized only 55% of the grass while still extracting the vast majority of the protein in the original grass feedstock. The protein fractions obtained from the SAG process had a similar amino acid profile to the core feedstock but also contained distinct characteristics over the other methods of extraction. FT-IR analysis, for example, identified the presence of an amide III band in the protein fractions obtained from the SAG process, indicating unique structural features that contribute to improved dispersibility, gelation properties, and water-in-water stability. Furthermore, the extracted moor grass protein contained a higher proportion of glutamic acid in comparison to other amino acids in the protein, which indicates a savoury umami (meaty) characteristic to the protein fraction. The protein extracted via SAG also exhibited good heat stability (139-214 °C), rendering them potentially suitable for baking applications. Additionally, coupling Na2CO3 with liquid assisted grinding not only removed the need for organic solvents and conventional heating but also reduced solvent consumption by 83%, compared with the typical alkaline extraction, thus simplifying the downstream processes necessary to produce food fractions. This study demonstrates the potential significance of mechanochemical extraction processes in unlocking nutrients from unconventional resources like grass, to produce the next generation of sustainable food ingredients.
Collapse
Affiliation(s)
| | - Fatma Guler
- Department of Chemical Engineering, University of Bath Claverton Down BA2 7AY Bath UK
| | - Christopher J Chuck
- Department of Chemical Engineering, University of Bath Claverton Down BA2 7AY Bath UK
- Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath Bath BA2 7AY UK
| | - Hannah S Leese
- Department of Chemical Engineering, University of Bath Claverton Down BA2 7AY Bath UK
- Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath Bath BA2 7AY UK
| | - Bernardo Castro-Dominguez
- Department of Chemical Engineering, University of Bath Claverton Down BA2 7AY Bath UK
- Centre for Digital Manufacturing and Design (dMaDe), University of Bath Bath BA2 7AY UK
| |
Collapse
|
2
|
Zou Q, Liu Y, Luo L, Chen Y, Zheng Y, Ran G, Liu D. Screening of Optimal Konjac Glucomannan-Protein Composite Gel Formulations to Mimic the Texture and Appearance of Tripe. Gels 2024; 10:528. [PMID: 39195057 DOI: 10.3390/gels10080528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
This study aimed to develop a product that closely replicates the texture and appearance of tripe. The effect of three different proteins (soy protein isolate (SPI), pea protein isolate (PPI), and whey protein isolate (WPI)) at different protein levels and processing conditions (heating (90 °C, 1 h) followed by cooling (4 °C, 12 h) and heating (90 °C, 1h) followed by freezing (-18 °C, 12 h)) of konjac glucomannan (KGM) was analyzed. The optimal formulations for simulating tripe were screened by examining their similarity to real tripe in terms of texture, color, and sensory experience. The screened formulations were also subjected to a preliminary mechanistic investigation. The results show that all three proteins improved the gel's textural properties to varying degrees. At the same concentration, the hardness and chewiness of the KGM/WPI composite gel were significantly higher than those of the other two KGM/protein composite gels, among which the composite gel obtained by adding 8% WPI and 5% KGM heating-frozen (FWK4) had the greatest hardness and chewiness of 4338.07 g and 2313.76, respectively, and the springiness differences in all of the composite gels were small. In addition, the addition of protein increased the whiteness of the hybrid gels, with WPI having the most significant effect on the whiteness of the composite gels (whiteness increased from 30.25 to 62.80 as the concentration of WPI increased from 0 to 10%). Freezing increased composite gel hardness and chewiness, but reduced gel springiness and whiteness. Cluster analysis showed that the composite gel obtained by heating-cooling 8% WPI and 5% KGM (WK4) was very similar to the real tripe in terms of chewiness and whiteness, and WK4 had the highest sensory scores for color, tissue morphology, tactile sensation, taste, and odor. The acceptability score in terms of tissue morphology reached 4.3. Meanwhile, the characterization results of WK4 indicate the presence of large junction areas in the gel network. Fourier transform infrared spectroscopy (FTIR) analysis, X-ray diffraction, and intermolecular force contributions indicated that the incorporation of WPI promoted integral interactions, and that hydrophobic interactions and disulfide bonding played a key role in the WK4 composite gel system. Moreover, scanning electron microscopy (SEM) also showed that the combination of WPI and konjac glucan resulted in a more compact gel structure. This study is informative for the development of the field of bionic tripe processing.
Collapse
Affiliation(s)
- Qiang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yudie Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Linghui Luo
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuyou Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuhan Zheng
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Guilian Ran
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
3
|
Zhou H, Vu G, Ju Q, Julian McClements D. Development of plant-based whole egg analogs using emulsion technology. Food Res Int 2024; 187:114406. [PMID: 38763658 DOI: 10.1016/j.foodres.2024.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
RuBisCO is a plant protein that can be derived from abundant and sustainable natural resources (such as duckweed), which can be used as both an emulsifying and gelling agent. Consequently, it has the potential to formulate emulsion gels that can be used for the development of plant-based replacements of whole eggs. In this study, we investigated the ability of RuBisCO-based emulsion gels to mimic the desirable properties of whole eggs. The emulsion gels contained 12.5 wt% RuBisCO and 10 wt% corn oil to mimic the macronutrient composition of real whole eggs. Initially, an oil-in-water emulsion was formed, which was then heated to convert it into an emulsion gel. The impact of oil droplet diameter (∼15, 1, and 0.2 μm) on the physicochemical properties of the emulsion gels was investigated. The lightness and hardness of the emulsion gels increased as the droplet size decreased, which meant that their appearance and texture could be modified by controlling droplet size. Different concentrations of curcumin (3, 6, and 9 mg/g oil) were incorporated into the emulsions using a pH-driven approach. The curcumin was used as a natural dual functional ingredient (colorant and nutraceutical). The yellow-orange color of curcumin allowed us to match the appearance of raw and cooked whole eggs. This study shows that whole egg analogs can be formulated using plant-based emulsion gels containing natural pigments.
Collapse
Affiliation(s)
- Hualu Zhou
- Department of Food Science and Technology, University of Georgia, Griffin, GA 30223, USA.
| | - Giang Vu
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Qian Ju
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
4
|
Marczak A, Mendes AC. Dietary Fibers: Shaping Textural and Functional Properties of Processed Meats and Plant-Based Meat Alternatives. Foods 2024; 13:1952. [PMID: 38928893 PMCID: PMC11202949 DOI: 10.3390/foods13121952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The search for alternative sources of plant-based ingredients to improve the textural and sensory properties of plant-based meat alternatives (PMAs) is a growing trend, with the potential to enhance the sustainability of global food systems. While much focus has been placed on plant-based proteins, it is known today that dietary fibers (DFs) can also play a key role in the textural and other physicochemical properties of traditional processed meat products and PMAs. This review examined the latest scientific literature regarding the advantages of using DF in food. It showcases the latest applications of DF in processed meats, PMAs, and the effects of DF on the functional properties of food products, thereby aiming to increase DF applications to create improved, healthier, and more sustainable meat and PMA foods. The predominant effects of DF on PMAs and processed meats notably include enhanced gel strength, emulsion stability, improved water-holding capacity, and the formation of a uniform, porous microstructure. DF also commonly enhances textural properties like hardness, chewiness, springiness, and cohesiveness. While the impact of DF on processed meats mirrors that of PMAs, selecting the right DF source for specific applications requires considering factors such as chemical structure, solubility, size, concentration, processing conditions, and interactions with other components to achieve the desired outcomes.
Collapse
Affiliation(s)
| | - Ana C. Mendes
- Research Group for Food Production Engineering, Technical University of Denmark (DTU)-Food, Henrik Dams Allé B202, 2800 Kgs., 2800 Lyngby, Denmark
| |
Collapse
|
5
|
Abstract
Owing to environmental, ethical, health, and safety concerns, there has been considerable interest in replacing traditional animal-sourced foods like meat, seafood, egg, and dairy products with next-generation plant-based analogs that accurately mimic their properties. Numerous plant-based foods have already been successfully introduced to the market, but there are still several challenges that must be overcome before they are adopted by more consumers. In this article, we review the current status of the science behind the development of next-generation plant-based foods and highlight areas where further research is needed to improve their quality, increase their variety, and reduce their cost, including improving ingredient performance, developing innovative processing methods, establishing structure-function relationships, and improving nutritional profiles.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| |
Collapse
|
6
|
McClements DJ. Novel animal product substitutes: A new category of plant-based alternatives to meat, seafood, egg, and dairy products. Compr Rev Food Sci Food Saf 2024; 23:e313330. [PMID: 38551190 DOI: 10.1111/1541-4337.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
Many consumers are adopting plant-centric diets to address the adverse effects of livestock production on the environment, health, and animal welfare. Processed plant-based foods, including animal product analogs (such as meat, seafood, egg, or dairy analogs) and traditional animal product substitutes (such as tofu, seitan, or tempeh), may not be desirable to a broad spectrum of consumers. This article introduces a new category of plant-based foods specifically designed to overcome the limitations of current animal product analogs and substitutes: novel animal product substitutes (NAPS). NAPS are designed to contain high levels of nutrients to be encouraged (such as proteins, omega-3 fatty acids, dietary fibers, vitamins, and minerals) and low levels of nutrients to be discouraged (such as salt, sugar, and saturated fat). Moreover, they may be designed to have a wide range of appearances, textures, mouthfeels, and flavors. For instance, they could be red, orange, green, yellow, blue, or beige; they could be spheres, ovals, cubes, or pyramids; they could be hard/soft or brittle/pliable; and they could be lemon, thyme, curry, or chili flavored. Consequently, there is great flexibility in creating NAPS that could be eaten in situations where animal products are normally consumed, for example, with pasta, rice, potatoes, bread, soups, or salads. This article reviews the science behind the formulation of NAPS, highlights factors impacting their appearance, texture, flavor, and nutritional profile, and discusses methods that can be used to formulate, produce, and characterize them. Finally, it stresses the need for further studies on this new category of foods, especially on their sensory and consumer aspects.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
7
|
Huang Z, Liu Y, An H, Kovacs Z, Abddollahi M, Sun Z, Zhang G, Li C. Utilizing Haematococcus pluvialis to simulate animal meat color in high-moisture meat analogues: Texture quality and color stability. Food Res Int 2024; 175:113685. [PMID: 38128978 DOI: 10.1016/j.foodres.2023.113685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
The effect of Haematococcus pluvialis (HP) (0.25∼1.25 %) as a colorant during high moisture extrusion (50 %) on the texture and microstructural properties of soy protein-based high moisture meat analogs (HMMA) was evaluated. Furthermore, the stability of HP-induced meat like color of the HMMA as a function of light exposure, freeze/thawing, frozen storage and cooking temperature and duration was investigated. The addition of HP reduced the elasticity of HMMA but enhanced its hardness, chewiness, and resilience. HP addition at low levels promoted the flexible and disordered regions within the protein secondary structure while excessive HP addition was unfavorable for protein cross-linking. The optimal degree of texturization was achieved with 0.75 % HP. Sensory evaluations revealed that HMMA with 1 %HP had a color similar to fresh beef sirloin, while HMMA with 0.25 % HP had a color closer to fresh pork loin. Light exposure induced the greatest color loss of the meat analogs compared with the cooking and frozen storage. The a* value of HMMA containing 1.25 % HP decreased by 30 % during the 14 days of light exposure. Frozen storage at darkness efficiently preserved the meat-like color of the extrudates. Overall, HP was found as promising colorant for HMMA production but the storage condition of the extrudates should be carefully optimized.
Collapse
Affiliation(s)
- Zehua Huang
- National Engineering Research Center of Wheat and Corn Further Processing, College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province 450001, People's Republic of China; Department of Measurements and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 14-16 Somlói Street, H-1118 Budapest, Hungary.
| | - Ying Liu
- National Engineering Research Center of Wheat and Corn Further Processing, College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Hongzhou An
- National Engineering Research Center of Wheat and Corn Further Processing, College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province 450001, People's Republic of China.
| | - Zoltan Kovacs
- Department of Measurements and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, 14-16 Somlói Street, H-1118 Budapest, Hungary
| | - Mehdi Abddollahi
- Department of Life Sciences-Food and Nutrition Science, Chalmers University of Technology, Kemigården 4, Gothenburg SE-41296, Sweden
| | - Zhongke Sun
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Gaoyang Zhang
- College of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Chengwei Li
- National Engineering Research Center of Wheat and Corn Further Processing, College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan Province 450001, People's Republic of China
| |
Collapse
|
8
|
Kim W, Wang Y, Vongsvivut J, Ye Q, Selomulya C. On surface composition and stability of β-carotene microcapsules comprising pea/whey protein complexes by synchrotron-FTIR microspectroscopy. Food Chem 2023; 426:136565. [PMID: 37302310 DOI: 10.1016/j.foodchem.2023.136565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
This study aims to elucidate the stability of spray dried β-carotene microcapsules by identifying their surface composition using synchrotron-Fourier transform infrared (FTIR) microspectroscopy. To investigate the impact of enzymatic cross-linking and polysaccharide addition on heteroprotein, three wall materials were prepared: pea/whey protein blends (Con), cross-linked pea/whey protein blends (TG), and cross-linked pea/whey protein blends-maltodextrin complex (TG-MD). The TG-MD exhibited the highest encapsulation efficiency (>90 %) after 8 weeks of storage followed by TG and Con. Chemical images obtained using synchrotron-FTIR microspectroscopy confirmed that the TG-MD displayed the least amount of surface oil, followed by TG and Con, due to increasing amphiphilic β-sheet structure of the proteins led by cross-linking and maltodextrin addition. Both enzymatic cross-linking and polysaccharide addition improved the stability of β-carotene microcapsules, demonstrating that pea/whey protein blends with maltodextrin can be utilised as a hybrid wall material for enhancing the encapsulation efficiency of lipophilic bioactive compounds in foods.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO - Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Qianyu Ye
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | | |
Collapse
|
9
|
Zhang Z, Qin D, Kobata K, Rao J, Lu J, McClements DJ. An In Vitro Comparison of the Digestibility and Gastrointestinal Fate of Scallops and Plant-Based Scallop Analogs. Foods 2023; 12:2928. [PMID: 37569197 PMCID: PMC10418770 DOI: 10.3390/foods12152928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Concerns exist regarding the negative environmental impact and health risks associated with ocean fishing and aquaculture, such as stock depletion, pollution, biodiversity loss, and toxin presence. To address these concerns, plant-based seafood analogs are being developed. Our previous study successfully created plant-based scallop analogs using pea proteins and citrus pectin, resembling real scallops in appearance and texture. This study focuses on comparing the digestive fate of these analogs to real scallops, as it can impact their nutritional properties. Using an in vitro digestion model (INFOGEST), we simulated oral, gastric, and small intestinal conditions. The analysis revealed differences in the microstructure, physicochemical properties, and protein digestibility between the plant-based scallops and real scallops. The particle size and charge followed the following similar trends for both types of scallops: the particle size decreased from the mouth to the stomach to the small intestine; the particles were negative in the mouth, positive in the stomach, and negative in the small intestine. The protein digestibility of the plant-based scallops was considerably lower than that of real scallops. For instance, around 18.8% and 61.4% of protein was digested in the stomach and small intestine phases for the real scallop (80.2% total digestion), whereas around 8.7% and 47.7% of the protein was digested for the plant-based scallop (56.4% total digestion). The lower digestibility of the plant-based scallops may have been due to differences in the protein structure, the presence of dietary fibers (pectin), or antinutritional factors in the plant proteins. These findings are crucial for developing more sustainable next-generation plant-based seafood analogs.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Z.Z.); (D.Q.); (K.K.); (J.L.)
| | - Dingkui Qin
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Z.Z.); (D.Q.); (K.K.); (J.L.)
| | - Kanon Kobata
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Z.Z.); (D.Q.); (K.K.); (J.L.)
| | - Jiajia Rao
- Department of Plant Science, North Dakota State University, Fargo, ND 58102, USA;
| | - Jiakai Lu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Z.Z.); (D.Q.); (K.K.); (J.L.)
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (Z.Z.); (D.Q.); (K.K.); (J.L.)
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
| |
Collapse
|
10
|
Moll P, Salminen H, Stadtmüller L, Schmitt C, Weiss J. Solidification of concentrated pea protein-pectin mixtures as potential binder. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4195-4202. [PMID: 36637051 DOI: 10.1002/jsfa.12448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Binders in plant-based meat analogues allow different components, such as extrudate and fat particles, to stick together. Typically, binders then are solidified to transform the mass into a non-sticky, solid product. As an option for a clean-label binder possessing such properties, the solidification behavior of pea protein-pectin mixtures (250 g kg-1 , r = 2:1, pH 6) was investigated upon heating, and upon addition of calcium, transglutaminase, and laccase, or by combinations thereof. RESULTS Mixtures of (homogenized) pea protein and apple pectin had higher elastic moduli and consistency coefficients and lower frequency dependencies upon calcium addition. This indicated that calcium physically cross-linked pectin chains that formed the continuous phase in the biopolymer matrix. The highest degree of solidification was obtained with a mixture of pea protein and sugar beet pectin upon addition of laccase that covalently cross-linked both biopolymers involved. All solidified mixtures lost their stickiness. A mixture of soluble pea protein and apple pectin solidified only slightly through calcium and transglutaminase, probably due to differences in the microstructural arrangement of the biopolymers. CONCLUSION The chemical makeup of the biopolymers and their spatial distribution determines solidification behavior in concentrated biopolymer mixtures. In general, pea protein-pectin mixtures can solidify and therefore have the potential to act as binders in meat analogues. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Pascal Moll
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Hanna Salminen
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Lucie Stadtmüller
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Christophe Schmitt
- Department of Chemistry, Nestlé Research, Nestlé Institute of Material Sciences, Lausanne, Switzerland
| | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
11
|
Tan Y, Zhang Z, McClements DJ. Preparation of plant-based meat analogs using emulsion gels: Lipid-filled RuBisCo protein hydrogels. Food Res Int 2023; 167:112708. [PMID: 37087213 DOI: 10.1016/j.foodres.2023.112708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
RuBisCo from duckweed is a sustainable source of plant proteins with a high water-solubility and good gelling properties. In this study, we examined the impact of RuBisCo concentration (9-33 wt %) and oil droplet concentration (0 to 14 wt %) on the properties of emulsion gels designed to simulate the properties of chicken breast. The color (L*a*b*), water holding capacity (WHC), textural profile analysis, shear modulus, and microstructure of the emulsion gels were measured. The gel hardness and WHC increased significantly with increasing protein concentration, reaching values equivalent to chicken breast. The lightness of the emulsion gels was less than that of chicken breast, due to the presence of pigments (such as polyphenols) in the protein. Shear modulus versus temperature measurements showed that gelation began when the protein solutions were heated to around 40 °C and then the gels hardened appreciably when the temperature was further raised to 90 °C. The shear modulus of the gels then increased during cooling, which was attributed to the strengthening of hydrogen bonds at lower temperatures. The hardness of the gels increased slightly but then decreased when the oil droplet concentration was raised from 0 to 14 %. The lightness of the protein gels increased after adding the oil droplets, which was attributed to increased light scattering. Microstructure analysis showed that the RuBisCo proteins formed a particulate gel after heating, with the oil droplets being in the interstices between the particulates. In summary, RuBisCo proteins can be dissolved at high concentrations and can form strong emulsion gels. Consequently, they may be able to mimic the composition and textural attributes of real chicken.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Zhiyun Zhang
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
12
|
Nowacka M, Trusinska M, Chraniuk P, Drudi F, Lukasiewicz J, Nguyen NP, Przybyszewska A, Pobiega K, Tappi S, Tylewicz U, Rybak K, Wiktor A. Developments in Plant Proteins Production for Meat and Fish Analogues. Molecules 2023; 28:molecules28072966. [PMID: 37049729 PMCID: PMC10095742 DOI: 10.3390/molecules28072966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/25/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
In recent years, there have been significant developments in plant proteins production for meat and fish analogues. Some of the key developments include the use of new plant protein sources such as soy, legumes, grains, potatoes, and seaweed, as well as insect proteins, leaf proteins, mushrooms, and microbial proteins. Furthermore, to improve the technological and functional properties of plant proteins, they can be subjected to traditional and unconventional treatments such as chemical (glycosylation, deamidation, phosphorylation, and acylation), physical (pulsed electric fields, ultrasound, high hydrostatic pressure, dynamic high-pressure treatment, and cold plasma), and biological (fermentation and enzymatic modification). To obtain the high quality and the desired texture of the food product, other ingredients besides proteins, such as water, fat, flavors, binders, dyes, vitamins, minerals, and antioxidants, also have to be used. The final product can be significantly influenced by the matrix composition, variety of ingredients, and water content, with the type of ingredients playing a role in either enhancing or constraining the desired texture of the food. There are several types of technologies used for meat and fish analogues production, including extrusion, shear cell technology, spinning, 3D printing, and others. Overall, the technologies used for meat and fish analogues production are constantly evolving as new innovations are developed and existing methods are improved. These developments have led to the creation of plant-based products that have a similar texture, taste, and nutritional profile to meat and fish, making them more appealing to consumers seeking alternatives to animal-based products.
Collapse
|
13
|
Dutt Tripathi A, Agarwal A. Scope, nutritional aspects, technology, and consumer preferences toward seafood alternatives. Food Res Int 2023; 168:112777. [PMID: 37120224 DOI: 10.1016/j.foodres.2023.112777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/06/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Sustainability, human health, and animal welfare are three broad areas that pose a greater impact on mankind. The increased consumption of animal-based foods such as fish or seafood has threatened the ecosystem due to rising greenhouse gas emissions, biodiversity loss, diseases, and consumption of toxic metals contained in fish by cause of water pollution. This has led to increased awareness among consumers to adopt seafood alternatives for a sustainable future. It is also not well known whether consumers are ready to switch from traditional seafood towards a safer and sustainable seafood alternative. This encourages the in-depth study of the scope of seafood alternatives in consumers' food choices. This study also highlights the nutritional perspectives and technologies involved in the development of seafood alternatives along with the future outlook for a greener planet.
Collapse
|
14
|
Enzymatic Modification of Plant Proteins for Improved Functional and Bioactive Properties. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Utilization of potato protein fractions to form oil-in-water nanoemulsions: Impact of pH, salt, and heat on their stability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|