1
|
Cuffaro D, Bertolini A, Silva AM, Rodrigues F, Gabbia D, De Martin S, Saba A, Bertini S, Digiacomo M, Macchia M. Comparative Analysis on Polyphenolic Composition of Different Olive Mill Wastewater and Related Extra Virgin Olive Oil Extracts and Evaluation of Nutraceutical Properties by Cell-Based Studies. Foods 2024; 13:3312. [PMID: 39456374 PMCID: PMC11507932 DOI: 10.3390/foods13203312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study reports a comparative analysis of the polyphenolic composition and nutraceutical properties of different olive mill wastewater (OMWW) and corresponding extra virgin olive oil (EVOO) extracts. Specifically, four OMWWs and corresponding EVOOs from cultivars Frantoio (A) and Leccino (B) obtained from different crushing seasons (early-stage (A1 and B1) and later-stage (A2 and B2)) were analyzed. Employing HPLC-DAD and LC-MS methods, the primary polyphenol content was identified and quantified. Overall, OMWW extracts showed a greater polyphenolic content compared to corresponding EVOO extracts, with OMWW B1 displaying the highest levels of polyphenols. The antiradical properties of extracts towards radical species (DPPH, ABTS, O2-, and HOCl-) were demonstrated in vitro, revealing a correlation with polyphenolic content. In fact, OMWW B1 and B2 demonstrated the strongest antiradical activity. Exploring nutraceutical properties of OMWWs, the intestinal permeation of the main polyphenols in a co-culture model (Caco-2 and HT29-MTX cell lines) was assessed, with tyrosol achieving a permeation of almost 60%. Furthermore, the involvement in the inflammation process has been evaluated in cell studies on THP1-derived macrophages by immunocytochemistry, demonstrating that OMWW B1 may exert an anti-inflammatory effect by modulating specific phenotype expression on macrophages. In conclusion, this study provides evidence supporting the reuse of OMWWs as a source of polyphenols with nutraceutical properties.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| | - Andrea Bertolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy;
| | - Ana Margarida Silva
- REQUIMTE/LAQV, ISEP, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; (A.M.S.); (F.R.)
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; (A.M.S.); (F.R.)
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 351131 Padova, Italy; (D.G.); (S.D.M.)
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 351131 Padova, Italy; (D.G.); (S.D.M.)
| | - Alessandro Saba
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy;
- Center for Instrument Sharing of the University of Pisa (CISUP), 56126 Pisa, Italy
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
- Center for Instrument Sharing of the University of Pisa (CISUP), 56126 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| |
Collapse
|
2
|
Cuffaro D, Palladino P, Digiacomo M, Bertini S, Minunni M, Macchia M. Fast, sensitive, and sustainable colorimetric detection of chlorogenic acid in artichoke waste material. Food Chem 2024; 463:141505. [PMID: 39366092 DOI: 10.1016/j.foodchem.2024.141505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Caffeoylquinic acids (CQAs) are nutraceutical polyphenols highly represented in natural sources, including artichoke waste (AW). In this study a colorimetric method for rapid and sustainable detection of a 5-CQA isomer (Chlorogenic acid) in AW extract was developed by using alkaline Tris buffer (10 mmol L-1, pH 9) to generate a yellow color associated with 5- to 3-CQA isomerization reaction, as suggested by NMR and MS analyses. The strong absorbance at 360 nm was followed by standard UV-Vis methodology. The colorimetric assay was exploited for detection of 5-CQA into leaf extract from artichoke, obtaining a value of 15.2 ± 0.3 μg/mg of dry extract, in agreement with HPLC analysis (14.3 ± 0.7 μg/mg, 106 ± 2 % recovery) used as validation technique, with excellent linear correlation and precision (R2 = 0.9996, avRSD% = 3.2 %). The method is fast and selective, offering a valuable tool for nutraceuticals identification and food waste valorization.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, 56100 Pisa, Italy
| | - Pasquale Palladino
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia, 3, 50019 Sesto Fiorentino (FI), Italy.
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, 56100 Pisa, Italy.
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Maria Minunni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
3
|
Barbalace MC, Freschi M, Rinaldi I, Zallocco L, Malaguti M, Manera C, Ortore G, Zuccarini M, Ronci M, Cuffaro D, Macchia M, Hrelia S, Giusti L, Digiacomo M, Angeloni C. Unraveling the Protective Role of Oleocanthal and Its Oxidation Product, Oleocanthalic Acid, against Neuroinflammation. Antioxidants (Basel) 2024; 13:1074. [PMID: 39334733 PMCID: PMC11428454 DOI: 10.3390/antiox13091074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Neuroinflammation is a critical aspect of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This study investigates the anti-neuroinflammatory properties of oleocanthal and its oxidation product, oleocanthalic acid, using the BV-2 cell line activated with lipopolysaccharide. Our findings revealed that oleocanthal significantly inhibited the production of pro-inflammatory cytokines and reduced the expression of inflammatory genes, counteracted oxidative stress induced by lipopolysaccharide, and increased cell phagocytic activity. Conversely, oleocanthalic acid was not able to counteract lipopolysaccharide-induced activation. The docking analysis revealed a plausible interaction of oleocanthal, with both CD14 and MD-2 leading to a potential interference with TLR4 signaling. Since our data show that oleocanthal only partially reduces the lipopolysaccharide-induced activation of NF-kB, its action as a TLR4 antagonist alone cannot explain its remarkable effect against neuroinflammation. Proteomic analysis revealed that oleocanthal counteracts the LPS modulation of 31 proteins, including significant targets such as gelsolin, clathrin, ACOD1, and four different isoforms of 14-3-3 protein, indicating new potential molecular targets of the compound. In conclusion, oleocanthal, but not oleocanthalic acid, mitigates neuroinflammation through multiple mechanisms, highlighting a pleiotropic action that is particularly important in the context of neurodegeneration.
Collapse
Affiliation(s)
- Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Irene Rinaldi
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | | | | | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
- COIIM-Interuniversitary Consortium for Engineering and Medicine, 86100 Campobasso, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, 56100 Pisa, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, 56100 Pisa, Italy
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
4
|
Wijaya GYA, Cuffaro D, Bertini S, Digiacomo M, Macchia M. 1-Acetoxypinoresinol, a Lignan from Olives: Insight into Its Characterization, Identification, and Nutraceutical Properties. Nutrients 2024; 16:1474. [PMID: 38794712 PMCID: PMC11123675 DOI: 10.3390/nu16101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Extra virgin olive oil (EVOO) is a symbol of the Mediterranean diet, constituting its primary source of fat. The beneficial effect of EVOO is strictly related to the presence of fatty acids and polyphenols, bioactive compounds endowed with nutraceutical properties. Among EVOO polyphenols, lignans possess a steroid-like chemical structure and are part of the phytoestrogen family, which is renowned for its health properties. The natural lignans (+)-pinoresinol and 1-acetoxypinoresinol (1-AP) are commonly present in olives and in EVOO. Although (+)-pinoresinol is found in different edible plants, such as flaxseed, beans, whole-grain cereals, sesame seeds, and certain vegetables and fruit, 1-AP was exclusively identified in olives in 2000. So far, the scientific literature has extensively covered different aspects of (+)-pinoresinol, including its isolation and nutraceutical properties. In contrast, less is known about the olive lignan 1-AP. Therefore, this review aimed to comprehensively evaluate the more important aspects of 1-AP, collecting all the literature from 2016 to the present, exploring its distribution in different cultivars, analytical isolation and purification, and nutraceutical properties.
Collapse
Affiliation(s)
- Ganesha Yanuar Arief Wijaya
- Doctoral School in Life Sciences, University of Siena, 53100 Siena, Italy;
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
5
|
Cuffaro D, Digiacomo M, Macchia M. Dietary Bioactive Compounds: Implications for Oxidative Stress and Inflammation. Nutrients 2023; 15:4966. [PMID: 38068824 PMCID: PMC10707977 DOI: 10.3390/nu15234966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nowadays, it has been amply demonstrated how an appropriate diet and lifestyle are essential for preserving wellbeing and preventing illnesses [...].
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
6
|
Cuffaro D, Bertolini A, Bertini S, Ricci C, Cascone MG, Danti S, Saba A, Macchia M, Digiacomo M. Olive Mill Wastewater as Source of Polyphenols with Nutraceutical Properties. Nutrients 2023; 15:3746. [PMID: 37686778 PMCID: PMC10489820 DOI: 10.3390/nu15173746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Agrifood waste products are often considered rich sources of bioactive compounds that can be conveniently recovered. Due to these peculiar characteristics, the study of these waste products is attracting great interest in nutraceutical research. Olive mill wastewaters (OMWWs) are generated by extra virgin olive oil (EVOO) production, and they pose environmental challenges due to their disposal. This study aimed to characterize the polyphenolic profile and to evaluate the nutraceutical properties of OMWW extracts from two Tuscan olive cultivars, Leccino (CL) and Frantoio (CF), collected during different time points in EVOO production. METHOD After a liquid-liquid extraction, the HPLC and LC-MS/MS analysis of OMWW extracts confirmed the presence of 18 polyphenolic compounds. RESULTS The polyphenol composition varied between the cultivars and during maturation stages. Notably, oleacein was detected at remarkably high levels in CL1 and CF1 extracts (314.628 ± 19.535 and 227.273 ± 3.974 μg/mg, respectively). All samples demonstrated scavenging effects on free radicals (DPPH and ABTS assays) and an anti-inflammatory potential by inhibiting cyclooxygenase (COX) enzymes. CONCLUSIONS This study highlights the nutraceutical potential of OMWW extracts, emphasizing their antioxidant, antiradical, and anti-inflammatory activities. The results demonstrate the influence of olive cultivar, maturation stage, and extraction process on the polyphenolic composition and the bioactivity of OMWW extracts. These findings support a more profitable reuse of OMWW as an innovative, renewable, and low-cost source of dietary polyphenols with potential applications as functional ingredients in the development of dietary supplements, as well as in the pharmaceutical and cosmetics industries.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| | - Andrea Bertolini
- Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, 56126 Pisa, Italy;
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (C.R.); (M.G.C.); (S.D.)
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (C.R.); (M.G.C.); (S.D.)
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (C.R.); (M.G.C.); (S.D.)
| | - Alessandro Saba
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
- Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, 56126 Pisa, Italy;
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy;
| |
Collapse
|
7
|
Esposto S, Urbani S, Selvaggini R, Taticchi A, Gallina Toschi T, Daidone L, Bendini A, Veneziani G, Sordini B, Servili M. Potential of the Oxidized Form of the Oleuropein Aglycon to Monitor the Oil Quality Evolution of Commercial Extra-Virgin Olive Oils. Foods 2023; 12:2959. [PMID: 37569227 PMCID: PMC10418756 DOI: 10.3390/foods12152959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The quality of commercially available extra-virgin olive oils (VOOs) of different chemical compositions was evaluated as a function of storage (12 months), simulating market storage conditions, to find reliable and early markers of the virgin olive oil (VOOs) quality status in the market. By applying a D-optimal design using the Most Descriptive Compound (MDC) algorithm, 20 virgin olive oils were selected. The initial concentrations of oleic acid, hydrophilic phenols, and α-tocopherol in the 20 VOOs ranged from 58.2 to 80.5%, 186.7 to 1003.2 mg/kg, and 170.7-300.6 mg/kg, respectively. K270, ∆K, (E, E)-2.4-decadienal and (E)-2-decenal, and the oxidative form of the oleuropein aglycon (3,4-DHPEA-EA-OX) reflected the VOO quality status well, with 3,4-DHPEA-EA-OX being the most relevant and quick index for simple monitoring of the "extra-virgin" commercial shelf-life category. Its HPLC-DAD evaluation is easy because of the different wavelength absorbances of the oxidized and non-oxidized form (3,4-DHPEA-EA), respectively, at 347 and 278 nm.
Collapse
Affiliation(s)
- Sonia Esposto
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (S.U.); (A.T.); (L.D.); (G.V.); (B.S.); (M.S.)
| | - Stefania Urbani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (S.U.); (A.T.); (L.D.); (G.V.); (B.S.); (M.S.)
| | - Roberto Selvaggini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (S.U.); (A.T.); (L.D.); (G.V.); (B.S.); (M.S.)
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (S.U.); (A.T.); (L.D.); (G.V.); (B.S.); (M.S.)
| | - Tullia Gallina Toschi
- Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy; (T.G.T.); (A.B.)
| | - Luigi Daidone
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (S.U.); (A.T.); (L.D.); (G.V.); (B.S.); (M.S.)
| | - Alessandra Bendini
- Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy; (T.G.T.); (A.B.)
| | - Gianluca Veneziani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (S.U.); (A.T.); (L.D.); (G.V.); (B.S.); (M.S.)
| | - Beatrice Sordini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (S.U.); (A.T.); (L.D.); (G.V.); (B.S.); (M.S.)
| | - Maurizio Servili
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy; (S.E.); (S.U.); (A.T.); (L.D.); (G.V.); (B.S.); (M.S.)
| |
Collapse
|
8
|
Cuffaro D, Pinto D, Silva AM, Bertolini A, Bertini S, Saba A, Macchia M, Rodrigues F, Digiacomo M. Insights into the Antioxidant/Antiradical Effects and In Vitro Intestinal Permeation of Oleocanthal and Its Metabolites Tyrosol and Oleocanthalic Acid. Molecules 2023; 28:5150. [PMID: 37446813 PMCID: PMC10343523 DOI: 10.3390/molecules28135150] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
(1) Background: In recent years, numerous studies have highlighted the beneficial effects of extra virgin olive oil (EVOO) as an active ingredient against chronic diseases. The properties of EVOO are due to its peculiar composition, mainly to its rich content of polyphenols. In fact, polyphenols may contribute to counteract oxidative stress, which often accompanies chronic diseases. In this work, the antioxidant effects of high-value polyphenol oleocanthal (OC) and its main metabolites, tyrosol (Tyr) and oleocanthalic acid (OA), respectively, have been investigated along with their impact on cell viability. (2) Methods: OC, Tyr, and OA have been evaluated regarding antiradical properties in term of scavenging capacity towards biologically relevant reactive species, including O2●-, HOCl, and ROO●, as well as their antioxidant/antiradical capacity (FRAP, DPPH●, ABTS●+). Moreover, the ability to permeate the intestinal membrane was assessed by an intestinal co-culture model composed by Caco-2 and HT29-MTX cell lines. (3) Results: The capacity of OC and Tyr as radical oxygen species (ROS) scavengers, particularly regarding HOCl and O2●-, was clearly demonstrated. Furthermore, the ability to permeate the intestinal co-culture model was plainly proved by the good permeations (>50%) achieved by all compounds. (4) Conclusions: OC, OA, and Tyr revealed promising properties against oxidative diseases.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Diana Pinto
- REQUIMTE/LAQV, ISEP, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; (D.P.); (A.M.S.)
| | - Ana Margarida Silva
- REQUIMTE/LAQV, ISEP, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; (D.P.); (A.M.S.)
| | - Andrea Bertolini
- Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (A.S.)
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
| | - Alessandro Saba
- Department of Surgery, Medical, Molecular and Critical Area Pathology, University of Pisa, 56126 Pisa, Italy; (A.B.); (A.S.)
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal; (D.P.); (A.M.S.)
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (S.B.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
9
|
Cuffaro D, Bertini S, Macchia M, Digiacomo M. Enhanced Nutraceutical Properties of Extra Virgin Olive Oil Extract by Olive Leaf Enrichment. Nutrients 2023; 15:nu15051073. [PMID: 36904073 PMCID: PMC10005073 DOI: 10.3390/nu15051073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
(1) Background: Nowadays, the health-promoting properties of extra virgin olive oil (EVOO), including the antioxidant and anti-inflammatory actions, are well recognized and mainly attributed to the different polyphenols, such as oleocanthal and oleacein. In EVOO production, olive leaves represent a high value by-product, showing a wide spectrum of beneficial effects due to the presence of polyphenols, especially oleuropein. Here we report the study of olive leaf extract (OLE)-enriched EVOO extracts, obtained by adding different percentages of OLE to EVOO in order to ameliorate their nutraceutical activities. (2) Methods: The polyphenolic content of the EVOO/OLE extracts was analyzed by HPLC and the Folin-Ciocalteau assay. For further biological testing, an 8% OLE-enriched EVOO extract was chosen. Therefore, antioxidant effects were evaluated by three different methods (DPPH, ABTS, and FRAP), and the anti-inflammatory properties were assessed in terms of cyclooxygenase activity inhibition. (3) Results: The antioxidant and anti-inflammatory profiles of the new EVOO/OLE extract are significantly improved compared to those of EVOO extract; (4) Conclusions: The combination of OLE and EVOO extract can lead to an extract enriched in terms of bioactive polyphenols and endowed with better biological properties than the singular EVOO extract. Therefore, it may represent a new complement in the nutraceutical field.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Simone Bertini
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Correspondence:
| |
Collapse
|
10
|
D’Archivio M, Santangelo C, Silenzi A, Scazzocchio B, Varì R, Masella R. Dietary EVOO Polyphenols and Gut Microbiota Interaction: Are There Any Sex/Gender Influences? Antioxidants (Basel) 2022; 11:antiox11091744. [PMID: 36139818 PMCID: PMC9495659 DOI: 10.3390/antiox11091744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence indicates that regular consumption of extra virgin olive oil (EVOO), the main source of fat in the Mediterranean diet, is associated with beneficial health effects and a reduced risk of developing chronic degenerative disorders. The beneficial effects of EVOO can be attributed to its unique composition in monounsaturated fats and phenolic compounds that provide important antioxidant, anti-inflammatory, and immune-modulating activities. On the other hand, it is well known that the gut microbiota has several important roles in normal human physiology, and its composition can be influenced by a multitude of environmental and lifestyle factors, among which dietary components play a relevant role. In the last few years, the two-way interaction between polyphenols, including those in EVOO, and the gut microbiota, i.e., the modulation of the microbiota by polyphenols and that of polyphenol metabolism and bioavailability by the microbiota, has attracted growing attention, being potentially relevant to explain the final effects of polyphenols, as well as of the microbiota profile. Furthermore, sex and gender can affect dietary habits, polyphenol intake, and nutrient metabolism. Lastly, it has been recently suggested that differences in gut microbiota composition could be involved in the unequal incidence of metabolic diseases observed between women and men, due to sex-dependent effects on shaping gut microbiota profiles according to diet. This review summarizes the most recent studies on the relationship between EVOO polyphenols and the gut microbiota, taking into account possible influences of sex and gender in modulating such an interaction.
Collapse
|
11
|
Gallardo-Fernández M, Gonzalez-Ramirez M, Cerezo AB, Troncoso AM, Garcia-Parrilla MC. Hydroxytyrosol in Foods: Analysis, Food Sources, EU Dietary Intake, and Potential Uses. Foods 2022; 11:foods11152355. [PMID: 35954121 PMCID: PMC9368174 DOI: 10.3390/foods11152355] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Hydroxytyrosol (HT) is a phenolic compound with proven biological properties present in a limited number of foods such as table olives, virgin olive oil (VOO) and wines. The present work aims to evaluate the dietary intake of HT in the European (EU) population by compiling scattered literature data on its concentration in foods. The consumption of the involved foods was estimated based on the EFSA Comprehensive European Food Consumption Database. The updated average contents of HT are as follows: 629.1, 5.2 and 2.1 µg/g for olives, olive oil and wine, respectively. The HT estimated intake in the European Union (EU) adult population falls within 0.13–6.82 mg/day/person, with table olives and wine being the main contributors. The estimated mean dietary intake of HT in EU countries is 1.97 ± 2.62 mg/day. Greece showed the highest HT intake (6.82 mg/day), while Austria presented the lowest (0.13 mg/day). Moreover, HT is an authorized novel food ingredient in the EU that can be added to different foods. Since the estimated HT intake is substantially low, the use of HT as a food ingredient seems feasible. This opens new possibilities for revalorizing waste products from olive oil and olive production which are rich HT sources.
Collapse
|
12
|
Yeon SW, Choi SR, Liu Q, Jo YH, Choi DH, Kim MR, Ryu SH, Lee S, Hwang BY, Hwang HS, Lee MK. Therapeutic Potentials of Secoiridoids from the Fruits of Ligustrum lucidum Aiton against Inflammation-Related Skin Diseases. Pharmaceuticals (Basel) 2022; 15:ph15080932. [PMID: 36015080 PMCID: PMC9415915 DOI: 10.3390/ph15080932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
Ligustrum lucidum Aiton is a flowering plant of the Oleaceae family, and its fruits have been traditionally used for skin nourishment and the treatment of skin diseases. However, the anti-inflammatory constituents for skin disease are not well-characterized. Phytochemical investigation of L. lucidum fruits resulted in the isolation of a new secoiridoid, secoligulene (1), together with (E)-3-(1-oxobut-2-en-2-yl)pentanedioic acid (2) and trans-(E)-3-(1-oxobut-2-en-2-yl)glutaric acid (3). Secoligulene (1) displayed the potent inhibitory effect on NO production with an IC50 value of 12.0 μg/mL. Secoligulene (1) also downregulated mRNA transcriptional levels of pro-inflammatory cytokines such as IL-1 α, IL-1β, IL-6 and COX-2 in LPS-stimulated RAW264.7 cells. Further investigation showed that secoligulene (1) inhibited the phosphorylation of IκB and JNK activated by LPS. In addition, secoligulene (1) downregulated the expression of chemokines such as CXCL8 and CCL20 in the TNF-α/IL-17/IFN-γ induced HaCaT psoriasis model. Taken together, these findings support the beneficial effects of L. lucidum and its constituents on inflammation-related skin diseases and can be further developed as therapeutic treatments for related diseases.
Collapse
Affiliation(s)
- Sang Won Yeon
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea; (S.W.Y.); (Y.H.J.); (S.H.R.); (S.L.); (B.Y.H.)
| | - Su Ryeon Choi
- School of Cosmetic Science and Beauty Biotechnology, Semyung University, Jecheon 27136, Korea; (S.R.C.); (D.H.C.); (M.R.K.)
| | - Qing Liu
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China;
| | - Yang Hee Jo
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea; (S.W.Y.); (Y.H.J.); (S.H.R.); (S.L.); (B.Y.H.)
| | - Da Hee Choi
- School of Cosmetic Science and Beauty Biotechnology, Semyung University, Jecheon 27136, Korea; (S.R.C.); (D.H.C.); (M.R.K.)
| | - Mi Ran Kim
- School of Cosmetic Science and Beauty Biotechnology, Semyung University, Jecheon 27136, Korea; (S.R.C.); (D.H.C.); (M.R.K.)
| | - Se Hwan Ryu
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea; (S.W.Y.); (Y.H.J.); (S.H.R.); (S.L.); (B.Y.H.)
| | - Solip Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea; (S.W.Y.); (Y.H.J.); (S.H.R.); (S.L.); (B.Y.H.)
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea; (S.W.Y.); (Y.H.J.); (S.H.R.); (S.L.); (B.Y.H.)
| | - Hyung Seo Hwang
- School of Cosmetic Science and Beauty Biotechnology, Semyung University, Jecheon 27136, Korea; (S.R.C.); (D.H.C.); (M.R.K.)
- Correspondence: (H.S.H.); (M.K.L.)
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea; (S.W.Y.); (Y.H.J.); (S.H.R.); (S.L.); (B.Y.H.)
- Correspondence: (H.S.H.); (M.K.L.)
| |
Collapse
|