1
|
Carboni AD, Puppo MC, Ferrero C. Gluten-free lentil cakes with optimal technological and nutritional characteristics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6298-6310. [PMID: 38501745 DOI: 10.1002/jsfa.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND The celiac population usually struggle finding nutritive gluten-free (GF) baked goods. GF foods can be improved using legume flours. Eleven GF cake formulations were elaborated according to different percentages of lentil flour (LF), corn flour (CF) and rice flour (RF) using a simplex lattice design. Water holding capacity and particle size of flours were evaluated. Moisture, aw, pH, specific volume, texture profile, relaxation, color and alveolar characteristics were determined for crumbs of all formulations. An optimization process was used to enhance the technological and nutritional attributes, selecting the three best formulations containing LF: 46% LF + 54% RF (CLF+RF); 49% LF + 51% CF (CLF+CF); and 100% LF (CLF), evaluated in their proximal composition and sensory characteristics. Linear and quadratic models for predicting the behavior of GF lentil cakes were obtained. RESULTS LF and CF could favor water incorporation and show more resistance to enzymatic digestion than RF. Formulations with LF showed an improvement in specific volume and alveolar parameters, while use of RF led to better cohesiveness, elasticity and resilience but with a deterioration in chewiness and firmness. CLF can be labeled as high in protein and fiber and presented the lowest amounts of lipids, carbohydrates and energy content. Consumer preference leaned towards CLF+RF. CONCLUSION It was possible to elaborate GF cakes using LF, obtaining nutritive products that can be offered to people intolerant to gluten ingestion. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Angela D Carboni
- CIDCA - Facultad de Ciencias Exactas (UNLP - CONICET), La Plata, Argentina
| | - María C Puppo
- CIDCA - Facultad de Ciencias Exactas (UNLP - CONICET), La Plata, Argentina
- Facultad de Ciencias Agrarias y Forestales (FCAyF - UNLP), La Plata, Argentina
| | - Cristina Ferrero
- CIDCA - Facultad de Ciencias Exactas (UNLP - CONICET), La Plata, Argentina
| |
Collapse
|
2
|
Lazou AE. Properties, Structure, and Acceptability of Innovative Legume-Based Biscuits with Alternative Sweeteners. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:8216796. [PMID: 38566753 PMCID: PMC10985278 DOI: 10.1155/2024/8216796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
The effects of legume incorporation and sweetener substitution on the quality characteristics of innovative biscuits were investigated. The wheat flour was substituted with chickpea and lentil flour at ratios ranging from 0 to 30% legume to whole-meal dicoccum wheat flour. The sugar was substituted by oligofructose at 50 and 100% levels. The quality characteristics, including physicochemical properties (moisture content, water activity, and color), sorption characteristics, structural and textural properties, and sensory properties, were significantly affected by the substitutions. Sorption phenomena were excellently described by the Guggenheim, Anderson, and de Boer (GAB) model, while its parameters were affected by substitutions. Scanning electron microscopy revealed a porous structure with starch granules embedded within the protein matrix, showing restricted gelatinization and keeping largely their form. The incorporation of legume flour increased the biscuit density, hardness, and spread ratio and decreased the color of the products. Furthermore, principal component analysis (PCA) analysis of instrumental and sensory characteristics showed that texture and sweetness were the key quality characteristics for product acceptance. It was found that highly acceptable legume-based biscuits with alternative sweeteners can be produced, with 50% oligofructose substitution and legume flour incorporation (chickpea or lentil) up to 30%.
Collapse
Affiliation(s)
- Andriana E. Lazou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, School of Food Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
3
|
Makhloufi L, Yamani MI. A Study of Physical, Chemical, and Sensory Characteristics of Novel Legume Dips. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:2875348. [PMID: 38529317 PMCID: PMC10963104 DOI: 10.1155/2024/2875348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
There is a consensus among experts and consumers that pulses are a good source of nutrients and fiber. In a traditional hummus recipe, chickpeas are the major ingredient. The present study is aimed at developing new legume dips by exchanging chickpeas (Chd) with dry green (Gld) and red lentils (Rld), dry white beans (Wbd), and dry green peas (Gpd). Presoaking, boiling, proximate composition, pH, energy, color measurement, and sensory evaluation were conducted on the dips using chickpea dip (hummus) as a control. One-way ANOVA was used to determine the differences between the dips. The results revealed significant differences in the proximate composition of legume dips. The protein content of the five samples ranged between 7.46% and 9.19%, while the values varied from 8.59% to 10.93% in fat, 3.88% to 6.54% in crude fiber, 14.48% to 15.51% in carbohydrates, 171.95 to 195.13 in energy, 1.55% to 1.76% in ash, and 63.35% to 66.90% in moisture. These variations could be attributed to the type and composition of each legume, the soaking and boiling process, and the tahini added during the preparation. pH ranged between 4.5 and 4.7. The color measurement indicated that the five legume dips could be considered bright products (high L∗>67), with a positive color valuebluered-green and yellow-. Significant differences (p ≤ 0.05) were observed in the legume dips sensory evaluation, and the red lentil dip was the most acceptable with results comparable to the chickpea dip; it was followed by the green lentil, white bean, and green pea dips. These results highlight the feasibility of commercial production of legume dip that promotes human health and gives consumers more choices.
Collapse
Affiliation(s)
- Lynda Makhloufi
- Department of Nutrition and Food Technology, Faculty of Agriculture, University of Jordan, Amman 11942, Jordan
| | - Mohammad I. Yamani
- Department of Nutrition and Food Technology, Faculty of Agriculture, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
4
|
Butuner R, Cinar I, Taspinar YS, Kursun R, Calp MH, Koklu M. Classification of deep image features of lentil varieties with machine learning techniques. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
5
|
Development of Protein- and Fiber-Enriched, Sugar-Free Lentil Cookies: Impact of Whey Protein, Inulin, and Xylitol on Physical, Textural, and Sensory Characteristics. Foods 2022; 11:foods11233819. [PMID: 36496628 PMCID: PMC9736369 DOI: 10.3390/foods11233819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Gluten-free (GF) diets often become nutritionally imbalanced, being low in proteins and fibers and high in sugars. Preparing GF foods with improved nutritional value is therefore a key challenge. This study investigates the impact of different combinations of whey protein (11.9%), inulin (6.0%) as dietary fiber, and xylitol (27.9%) as a sweetener used in the enrichment of green- and red-lentil-based gluten-free cookies. The cookies were characterized in terms of baking loss, geometric parameters, color, texture, and sensory profile. The results showed that these functional ingredients had different impacts on the lentil cookies made of different (green/red) lentils, especially regarding the effect of fiber and xylitol on the volume (green lentil cookies enriched with fiber: 16.5 cm3, sweetened with xylitol: 10.9 cm3 vs. 21.2 cm3 for control; red lentil cookies enriched with fiber: 21.9 cm3, sweetened with xylitol: 21.1 cm3 vs. 21.8 cm3 for control) and color (e.g., b* for green lentil cookies enriched with fiber: 13.13, sweetened with xylitol: 8.15 vs. 16.24 for control; b* for red lentil cookies enriched with fiber: 26.09, sweetened with xylitol: 32.29 vs. 28.17 for control). Regarding the textural attributes, the same tendencies were observed for both lentil products, i.e., softer cookies were obtained upon xylitol and whey protein addition, while hardness increased upon inulin enrichment. Stickiness was differently influenced by the functional ingredients in the case of green and red lentil cookies, but all the xylitol-containing cookies were less crumbly than the controls. The interactions of the functional ingredients were revealed in terms of all the properties investigated. Sensory analysis showed that the addition of whey protein resulted in less intensive "lentil" and "baked" aromas (mostly for red lentil cookies), and replacement of sugar by xylitol resulted in crumblier and less hard and crunchier products. The application of different functional ingredients in the enrichment of lentil-based gluten-free cookies revealed several interactions. These findings could serve as a starting point for future research and development of functional GF products.
Collapse
|
6
|
Chan KH, Chang CK, Gavahian M, Yudhistira B, Santoso SP, Cheng KC, Hsieh CW. The Impact of Different Pretreatment Processes (Freezing, Ultrasound and High Pressure) on the Sensory and Functional Properties of Black Garlic (Allium sativum L.). Molecules 2022; 27:molecules27206992. [PMID: 36296587 PMCID: PMC9607198 DOI: 10.3390/molecules27206992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Black garlic (BG) is an emerging derivative of fresh garlic with enhanced nutritional properties. This study aimed to develop functional BG products with good consumer acceptance. To this end, BG was treated with freezing (F-BG), ultrasound (U-BG), and HHP (H-BG) to assess its sensory and functional properties. The results showed that F-BG and H-BG had higher S-allyl-cysteine (SAC), polyphenol, and flavonoid contents than BG. H-BG and F-BG displayed the best sensory quality after 18 days of aging, while 5-hydroxymethylfurfural (5-HMF), SAC, and polyphenols were identified as the most influential sensory parameters. Moreover, the F-BG and H-BG groups achieved optimal taste after 18 days, as opposed to untreated BG, which needed more than 24 days. Therefore, the proposed approaches significantly reduced the processing time while enhancing the physical, sensory, and functional properties of BG. In conclusion, freezing and HHP techniques may be considered promising pretreatments to develop BG products with good functional and sensory properties.
Collapse
Affiliation(s)
- Kai-Hui Chan
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Bara Yudhistira
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
- Department of Food Science and Technology, Sebelas Maret University, Surakarta City 57126, Indonesia
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia
- Department of Chemical Engineering, National Taiwan University of Science and Techology, Daan Dist., Taipei 10607, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Optometry, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
- Correspondence: (K.-C.C.); (C.-W.H.); Tel.: +886-4-22840385 (ext. 5010) (C.-W.H.)
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
- Correspondence: (K.-C.C.); (C.-W.H.); Tel.: +886-4-22840385 (ext. 5010) (C.-W.H.)
| |
Collapse
|
7
|
Influence of Preferments on the Physicochemical and Sensory Quality of Traditional Panettone. Foods 2022; 11:foods11172566. [PMID: 36076752 PMCID: PMC9455473 DOI: 10.3390/foods11172566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
In Peru, panettones are consumed in July and December. The main ingredient of panettones is wheat flour, which can be replaced with substitute flours to improve their nutritional, textural and sensory properties. This study aimed to evaluate the physicochemical, textural and sensory characteristics of panettones produced with three preferments, namely, biga (PB), sourdough (PMM) and sponge (PE), with the substitution of red quinoa flour and amaranth compared with a commercial product (PC). A completely randomized design with four experimental treatments was used to evaluate the total carbohydrate content, ash, total energy, fat, moisture, protein, color and texture profile. In addition, sensory characteristics were evaluated by 80 consumers using the CATA method; the purchase intention and preference ranking were also investigated. The results showed better sensory characteristics of panettones produced with preferments compared with a commercial product with similar characteristics. The sponge preferment presented better sensory characteristics with a profile of sweet, spongy, vanilla odor and moist texture, along with greater acceptability, preference and purchase intention, followed closely by the biga. It was concluded that the sponge preferment presented better sensory properties, which were correlated with its texture profile as manifested by an intermediate hardness, good elasticity and cohesiveness, which translated into greater acceptability, preference and purchase intention.
Collapse
|