1
|
Kong Y, He S, Ma D, Gu X, Wang Q, Zhao J, Zhang J, Tian Q, Zheng Y, Chen Y, Zheng K. Chemical composition determination and transcriptomic analyses provide insight into the differences between wild and grafted Semen Ziziphi Spinosae. BMC Genomics 2024; 25:978. [PMID: 39425014 PMCID: PMC11487973 DOI: 10.1186/s12864-024-10837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
Semen Ziziphi Spinosae (SZS) is a traditional Chinese herbal medicine widely used to treat insomnia and anxiety in clinical practice. Currently, the demand for SZS is increasing every year, but the production of wild SZS is unstable due to environmental factors. Grafting sour jujube scions onto sour jujube or jujube tree stocks can achieve a high production rate within a short period of time. However, the effects of grafting on the quality of SZS have not been reported. This study investigated the differences between wild-type and grafted SZS from three aspects: phenotype, chemical composition, and molecular mechanism. The findings revealed that the grafted specimens were generally larger in morphology and lighter in color than the wild-type samples. The dimensions of both the grafted specimens were generally larger than those of the wild specimens. The HPLC-ELSD results revealed that the three main chemical components in the grafted SZS, namely, spinosin, jujuboside A, and jujuboside B, had higher contents than their wild-type counterparts. Comprehensive transcriptome sequencing analysis and KEGG annotation revealed that DEG enrichment between grafted and wild-type SZS occurred mainly during stress resistance and rootstock scion healing. There were 23 DEGs that may encode enzymes involved in the biosynthetic pathway of flavonoids and 21 genes encoding terpenoid saponins. Further investigation revealed that the expression of the genes C4H, CHS, CHI, and F3'5'H in the flavonoid biosynthesis pat.hway and HMGR, MVK, MVD, and FPPS in the saponin biosynthesis pathway accounted for the difference in quality between grafted and wild SZS. Furthermore, WGCNA identified 15 core genes related to medicinal ingredients between grafted and wild SZS. These results provide support for further research on the differences in the quality of medicinal ingredients between grafted and wild SZS.
Collapse
Affiliation(s)
- Yaxing Kong
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- International Joint Research Centre on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China
- Department of Chinese Materia Medica, Hebei Institute for Drug and Medical Device Control, Shijiazhuang, 050200, China
| | - Shulei He
- College of Geographical Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Donglai Ma
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- International Joint Research Centre on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China
- Department of Chinese Materia Medica, Hebei Institute for Drug and Medical Device Control, Shijiazhuang, 050200, China
| | - Xian Gu
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- International Joint Research Centre on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China
- Department of Chinese Materia Medica, Hebei Institute for Drug and Medical Device Control, Shijiazhuang, 050200, China
| | - Qian Wang
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- International Joint Research Centre on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China
- Department of Chinese Materia Medica, Hebei Institute for Drug and Medical Device Control, Shijiazhuang, 050200, China
| | - Jingqiao Zhao
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- International Joint Research Centre on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China
- Department of Chinese Materia Medica, Hebei Institute for Drug and Medical Device Control, Shijiazhuang, 050200, China
| | - Jianyun Zhang
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- International Joint Research Centre on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China
- Department of Chinese Materia Medica, Hebei Institute for Drug and Medical Device Control, Shijiazhuang, 050200, China
| | - Qian Tian
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- International Joint Research Centre on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China
- Department of Chinese Materia Medica, Hebei Institute for Drug and Medical Device Control, Shijiazhuang, 050200, China
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- International Joint Research Centre on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China
| | - Yanmei Chen
- College of Geographical Science, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Kaiyan Zheng
- Traditional Chinese Medicine Processing Technology Innovation Centre of Hebei Province, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- International Joint Research Centre on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China.
- Department of Chinese Materia Medica, Hebei Institute for Drug and Medical Device Control, Shijiazhuang, 050200, China.
| |
Collapse
|
2
|
Ma D, Zhao M, Guo H, Wang L, Li Y, Yuan S, Yan Y, Zheng Y, Gu X, Song Y, Han X, Sun H. Spatial distribution of metabolites in processing Ziziphi Spinosae Semen as revealed by matrix-assisted laser desorption/ionization mass spectrometry imaging. Sci Rep 2024; 14:15263. [PMID: 38961089 PMCID: PMC11222422 DOI: 10.1038/s41598-024-61500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/07/2024] [Indexed: 07/05/2024] Open
Abstract
Ziziphi Spinosae Semen (ZSS) is the first choice for the treatment of insomnia. This research aimed to reveal the spatial distribution of identifying quality markers of ZSS and to illustrate the metabolite quality characteristics of this herbal medicine. Here, we performed a matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) in situ to detect and image 33 metabolites in ZSS, including three saponins, six flavonoids, four alkaloids, eight fatty acids, and 12 amino acids. The MALDI images of the metabolites clearly showed the heterogeneous spatial distribution in different regions of ZSS tissues, such as the cotyledon, endosperm, and radicle. The distribution area of two saponins, six flavonoids, and three alkaloids increased significantly after the fried processing of ZSS. Based on the ion images, samples with different processing technologies were distinguished unambiguously by the pattern recognition method of orthogonal partial least squares discrimination analysis (OPLS-DA). Simultaneously, 23 major influencing components exerting higher ion intensities were identified as the potential quality markers of ZSS. Results obtained in the current research demonstrate that the processing of ZSS changes its content and distribution of the medicinal components. The analysis of MALDI-MSI provides a novel MS-based molecular imaging approach to investigate and monitor traditional medicinal plants.
Collapse
Affiliation(s)
- Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
- International Joint Research Center On Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050091, China
| | - Mengwei Zhao
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Haochuan Guo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Lili Wang
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, 054001, China.
| | - Yage Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Shinong Yuan
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yuping Yan
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China
| | - Yuguang Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xian Gu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yongxing Song
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xiaowei Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Huigai Sun
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, 050200, China.
| |
Collapse
|
3
|
Yu Y, Zhang B, Jiang X, Cui Y, Luo H, Stergiadis S, Wang B. Exploring the metabolomic landscape: Perilla frutescens as a promising enhancer of production, flavor, and nutrition in Tan lamb meat. Meat Sci 2024; 209:109419. [PMID: 38154372 DOI: 10.1016/j.meatsci.2023.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Addressing health-related concerns linked to the metabolite profile of lamb meat has become paramount, in line with the growing demand for enhanced flavor and taste. We examined the impact of Perilla frutescens seeds on Tan lamb growth, carcass traits, and metabolite profiles. Three diets were employed: a low-concentrate group (LC), a high-concentrate group (HC), and a PFS group (the LC diet supplemented with 3% Perilla frutescens seeds) on a dry matter basis. Forty-five male Tan-lambs (approximately six months) with similar body weights (25.1 kg ± 1.12 SD) were randomly assigned to one of these three groups for 84-day feeding, including an initial 14-day adjustment phase. The supplementation of PFS resulted in increased average daily gain (P < 0.01) and improved carcass quality and meat color (P < 0.05). Additionally, it led to an enhancement in omega-3 polyunsaturated fatty acids (P < 0.05) and a reduction in the omega-6/omega-3 ratio (P < 0.05). Using gas chromatography-mass spectrometry, 369 volatile compounds were identified with enhanced levels of acetaldehyde and 1,2,4-trimethyl-benzene associated with PFS (P < 0.05). Among the 807 compounds identified by ultra-high performance liquid chromatography-mass spectrometry, there were 66 significantly differential compounds (P < 0.05), including 43 hydrophilic metabolites and 23 lipids. PFS supplementation led to significant alterations in 66 metabolites, with three metabolites including 2,5-diisopropyl-3-methylphenol, 3-hydroxydecanoic acid, and lysophosphatidylcholine (15:0) emerging as potential PFS-related biomarkers. The study indicates that PFS supplementation can enhance Tan-lamb growth, feed efficiency, and meat quality, potentially providing lamb meat with improved flavor and nutritional characteristics.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Boyan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xianzhe Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yimeng Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Sokratis Stergiadis
- University of Reading, School of Agriculture, Policy and Development, Department of Animal Sciences, Reading RG6 6EU, United Kingdom
| | - Bing Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
4
|
Liu Z, Cheng Y, Chao Z. A Comprehensive Quality Analysis of Different Colors of Medicinal and Edible Honeysuckle. Foods 2023; 12:3126. [PMID: 37628125 PMCID: PMC10453482 DOI: 10.3390/foods12163126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Honeysuckle (the dried flower bud or opening flower of Lonicera japonica Thunb.), a medicinal and edible substance, has is greatly popular among consumers for its remarkable health effects, such as antioxidant, antibacterial, and anti-inflammatory effects. However, due to the influences of processing methods, storage conditions, and other factors, honeysuckles show different colors which can directly reflect the quality and the price on the market. In order to comprehensively compare the quality of different colors, 55 batches of honeysuckle samples were collected and analyzed. Their color parameters, chlorophyll content (chl), total phenol content (TPC), total flavonoid content (TFC), antioxidant activity (AA), main active compounds, and metabolites were measured. As a result, the initial green-white (GW) samples, a kind of highest-quality honeysuckle, had the smallest a* value, largest h*, chl, TPC, TFC, and AA values, and highest content of chlorogenic acid and cynaroside. There was a significant difference between GW samples and a series of discolored samples. As the color darkened or lightened, the quality gradually decreased. The yellow-brown (YB) samples were of the worst quality and were no longer available for clinical and health purposes. A series of differential metabolites, such as quercetin-7-O-glucoside and secologanoside, could be used as important references to evaluate the quality of differently colored samples. The metabolic profile of honeysuckle provided new insights into the process of color change and laid a foundation for further honeysuckle quality control. The correlation results showed that the a* and h* values significantly affect the abovementioned quality indicators and the 10 main active compounds. In other words, the color difference could directly reflect the quality and clinical efficacy. Multiple regression analysis was carried out using combined L*, a*, and b* values to predict the quality of honeysuckle. This is the first time the quality of different color honeysuckle samples on the post-harvest link has been systematically compared and a demonstration of medicinal and edible substances with different colors has been provided.
Collapse
Affiliation(s)
| | | | - Zhimao Chao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.L.); (Y.C.)
| |
Collapse
|
5
|
Zhang JB, Li MX, Zhang YF, Qin YW, Li Y, Su LL, Li L, Bian ZH, Lu TL. E-eye, flash GC E-nose and HS-GC-MS combined with chemometrics to identify the adulterants and geographical origins of Ziziphi Spinosae Semen. Food Chem 2023; 424:136270. [PMID: 37207600 DOI: 10.1016/j.foodchem.2023.136270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023]
Abstract
Ziziphi Spinosae Semen (ZSS), a valuable seed food, has faced increasing authenticity issues. In this study, the adulterants and geographical origins of ZSS were successfully identified by electronic eye, flash gas chromatography electronic nose (Flash GC e-nose) and headspace gas chromatography-mass spectrometry (HS-GC-MS). As a result, there were color differences between ZSS and adulterants, mainly represented by the a* value of ZSS was less than adulterants. In ZSS, 29 and 32 compounds were detected by Flash GC e-nose and HS-GC-MS. Spicy, sweety, fruity and herbal were the main flavor of ZSS. Five compounds were determined to be responsible for flavor differences between different geographical origins. In the HS-GC-MS analysis, the relative content of Hexanoic acid was the highest in ZSS from Hebei and Shandong, while 2,4-Decadien-1-ol was the highest in Shaanxi. Overall, this study provided a meaningful strategy for addressing authenticity problems of ZSS and other seed foods.
Collapse
Affiliation(s)
- Jiu-Ba Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ming-Xuan Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun-Fei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu-Wen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lian-Lin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen-Hua Bian
- Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China.
| | - Tu-Lin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Cheng Y, Wu C, Liu Z, Song P, Xu B, Chao Z. Evaluation and Optimization of Quality Based on the Physicochemical Characteristics and Metabolites Changes of Qingpi during Storage. Foods 2023; 12:foods12030463. [PMID: 36765992 PMCID: PMC9914837 DOI: 10.3390/foods12030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Qingpi, the dried immature pericarp of Citrus reticulata Blanco, is a commonly used medicinal food with some health-promoting benefits. In general, it is essential that Qingpi be stored for a period of time, but there are no reports about the number of storage years needed to obtain the best quality of Qingpi. Our aim was to determine the best storage time of Qingpi by studying the physicochemical properties and metabolite changes in product stored from 1 to 5 years. As a result, the color of Qingpi became darker during storage. Both the levels of three flavonoids (hesperidin, nobiletin, and tangeretin) and total flavonoids (TFs) and the antioxidant activity decreased during storage and the total phenolics (TPs) content fluctuated during storage. Cluster analysis was performed on the color parameters measured using a color difference meter, revealing that the color of Qingpi differed before and after 3 years of storage. A total of 9 special differential metabolites were identified that could be used to distinguish the storage years of Qingpi. This is the first study to report the quality changes of Qingpi during storage. The optimized results of the quality evaluation indicated that Qingpi should be stored for no more than 3 years.
Collapse
|