1
|
Longo A, Amendolagine G, Miani MG, Rizzello CG, Verni M. Effect of Air Classification and Enzymatic and Microbial Bioprocessing on Defatted Durum Wheat Germ: Characterization and Use as Bread Ingredient. Foods 2024; 13:1953. [PMID: 38928894 PMCID: PMC11203247 DOI: 10.3390/foods13121953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Its high dietary fiber and protein contents and nutritional quality make defatted wheat germ (DWG) a valuable cereal by-product, yet its negative impact on food structure limits its use as a food ingredient. In this research, DWG underwent air classification, which identified two fractions with high fiber (HF) and low fiber/high protein (LF) contents, and a bioprocessing protocol, involving treatment with xylanase and fermentation with selected lactic acid bacterial strains. The degree of proteolysis was evaluated through electrophoretic and chromatographic techniques, revealing differences among fractions and bioprocessing options. Fermentation led to a significant increase in free amino acids (up to 6 g/kg), further enhanced by the combination with xylanase. When HF was used as an ingredient in bread making, the fiber content of the resulting bread exceeded 3.6 g/100 g, thus reaching the threshold required to make a "source of fiber" claim according to Regulation EC No.1924/2006. Meanwhile, all breads could be labeled a "source of protein" since up to 13% of the energy was provided by proteins. Overall, bioprocessed ingredients lowered the glycemic index (84 vs. 89) and increased protein digestibility (80 vs. 63%) compared to control breads. Technological and sensory analysis showed that the enzymatic treatment combined with fermentation also conferred a darker and more pleasant color to the bread crust, as well as better crumb porosity and elasticity.
Collapse
Affiliation(s)
- Angela Longo
- Department of Environmental Biology, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.L.); (C.G.R.)
| | | | - Marcello Greco Miani
- Casillo Next Gen Food s.r.l, Via Sant’Elia, SNC, 70033 Corato, BRI, Italy; (G.A.); (M.G.M.)
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.L.); (C.G.R.)
| | - Michela Verni
- Department of Environmental Biology, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.L.); (C.G.R.)
| |
Collapse
|
2
|
Sereti F, Alexandri M, Papadaki A, Papapostolou H, Kopsahelis N. Carotenoids production by Rhodosporidium paludigenum yeasts: Characterization of chemical composition, antioxidant and antimicrobial properties. J Biotechnol 2024; 386:52-63. [PMID: 38548021 DOI: 10.1016/j.jbiotec.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
The high market potential imposed by natural carotenoids has turned the scientific interest in search for new strains, capable of synthesizing a wide spectrum of these pigments. In this study, Rhodosporidium paludigenum NCYC 2663 and 2664 were investigated for carotenoids production and lipid accumulation utilizing different carbon sources (glucose, fructose, sucrose, mixture of glucose: galactose). Strain R. paludigenum 2663 produced the highest total carotenoids titer (2.21 mg/L) when cultivated on sucrose, together with 4 g/L lipids (30% w/w content) and 7 g/L exopolysaccharides. In the case of R. paludigenum 2664, glucose favored the production of 2.93 mg/L total carotenoids and 1.57 g/L lipids (31.8% w/w content). Analysis of the chemical profile during fermentation revealed that β-carotene was the prominent carotenoid. Strain 2663 co-produced γ-carotene, torulene and torularhodin in lower amounts, whereas 2664 synthesized almost exclusively β-carotene. The produced lipids from strain 2663 were rich in oleic acid, while the presence of linoleic acid was also detected in the lipoic fraction from strain 2664. The obtained carotenoid extracts exhibited antioxidant (IC50 0.14 mg/mL) and high antimicrobial activity, against common bacterial and fungal pathogenic strains. The results of this study are promising for the utilization of biotechnologically produced carotenoids in food applications.
Collapse
Affiliation(s)
- Fani Sereti
- Department of Food Science and Technology, Ionian University, Argostoli, Kefalonia 28100, Greece
| | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, Argostoli, Kefalonia 28100, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, Kefalonia 28100, Greece
| | - Harris Papapostolou
- Department of Food Science and Technology, Ionian University, Argostoli, Kefalonia 28100, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, Kefalonia 28100, Greece.
| |
Collapse
|
3
|
Mahfouzi M, Zhang H, Haoran L, McClements DJ, Hadidi M. Starch-based particles as stabilizers for Pickering emulsions: modification, characteristics, stabilization, and applications. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38436130 DOI: 10.1080/10408398.2024.2312285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The potential utilization of starch as a particle-based emulsifier in the preparation of Pickering emulsions is gaining interest within the food industry. Starch is an affordable and abundant functional ingredient, which makes it an excellent candidate for the stabilization of Pickering emulsions. This review article focuses on the formation, stabilization, and properties of Pickering emulsions formulated using starch-based particles and their derivatives. First, methods of isolating and modifying starch-based particles are highlighted. The key parameters governing the properties of starch-stabilized Pickering emulsions are then discussed, including the concentration, size, morphology, charge, and wettability of the starch-based particles, as well as the type and size of the oil droplets. The physicochemical mechanisms underlying the ability of starch-based particles to form and stabilize Pickering emulsions are also discussed. Starch-based Pickering emulsions tend to be more resistant to coalescence than conventional emulsions, which is useful for some food applications. Potential applications of starch-stabilized Pickering emulsions are reviewed, as well as recent studies on their gastrointestinal fate. The information provided may stimulate the utilization of starch-based Pickering emulsions in food and other industries.
Collapse
Affiliation(s)
- Maryam Mahfouzi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, China
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, China
| | - Li Haoran
- College of Integration Science, Yanbian University, Yanji, Jilin, China
| | | | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Salari S, Ferreira J, Lima A, Sousa I. Effects of Particle Size on Physicochemical and Nutritional Properties and Antioxidant Activity of Apple and Carrot Pomaces. Foods 2024; 13:710. [PMID: 38472822 DOI: 10.3390/foods13050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The food processing industry is growing rapidly and producing large amounts of by-products, such as pomaces, which are considered as no-value waste and cause significant environmental pollution. The main by-products of fruit juice processing companies are apple and carrot pomaces, which can be used to create new functional food products. In the present study, the effects of particle size (PS) on the proximate composition, nutritional properties, and antioxidant activity of apple pomace flour (APF) and carrot pomace flour (CPF) were determined. Four different PS fractions, PS > 1 mm, 1 > PS > 0.71 mm, 0.71 > PS > 0.18 mm, and 0.18 > PS > 0.075 mm were used for the present study. Their vitamin, carotenoid, organic acid, and reducing sugar contents were determined using HPLC. The proximate compositions of each PS fraction of the AP and CP flours were determined using recommended international standard methods. DPPH, FRAP, and Folin-Ciocalteu methods were used to measure their antioxidant activity and total phenolic compounds, respectively. The moisture content (around 12.1 mg/100 g) was similar in all PS fractions and in both flours. The APF had lower protein (4.3-4.6 g/100 g dw) and ash (1.7-2.0 g/100 g dw) contents compared to the CPF, with protein contents ranging from 6.4-6.8 g/100 g dw and ash contents ranging from 5.8-6.1 g/100 g dw. Smaller particles, regardless of flour type, exhibited higher sugar and phenolic contents and antioxidant activity, while vitamins were more abundant in particles larger than 1 mm. In the APF, larger particles had a higher fiber content than smaller particles, while their fat content was the lowest. PS also had an impact on the results of the carotenoid contents. This study underscores the direct impact of PS on the distribution of sugars, crude fiber, fat, carotenoids, vitamins, total phenolic compounds, and antioxidant activity in pomaces.
Collapse
Affiliation(s)
- Saeed Salari
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Joana Ferreira
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana Lima
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal
| | - Isabel Sousa
- LEAF-Linking Landscape, Environment, Agriculture and Food-Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
5
|
Kewuyemi YO, Adebo OA. Complementary nutritional and health promoting constituents in germinated and probiotic fermented flours from cowpea, sorghum and orange fleshed sweet potato. Sci Rep 2024; 14:1987. [PMID: 38263382 PMCID: PMC10806186 DOI: 10.1038/s41598-024-52149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024] Open
Abstract
Germination and fermentation are age-long food processes that beneficially improve food composition. Biological modulation by germination and probiotic fermentation of cowpea, sorghum, and orange-fleshed sweet potato (OFSP) and subsequent effects on the physicochemical (pH and total titratable acidity), nutritional, antinutritional factors and health-promoting constituents/properties (insoluble dietary fibres, total flavonoid and phenolic contents (TFC and TPC) and antioxidant capacity) of the derived flours were investigated in this study. The quantification of targeted compounds (organic acids and phenolic compounds) on an ultra-high performance liquid chromatography (UHPLC) system was also done. The whole cowpea and sorghum were germinated at 35 °C for 48 h. On the other hand, the milled whole grains and beans and OFSP were fermented using probiotic mesophilic culture at 35 °C for 48 h. Among the resultant bioprocessed flours, fermented sorghum and sweet potato (FSF and FSP) showed mild acidity, increased TPC, and improved ferric ion-reducing antioxidant power. While FSF had better slowly digestible and resistant starches and the lowest oxalate content, FSP indicated better hemicellulose, lowest fat, highest luteolin, caffeic and vanillic acids. Germinated cowpea flour exhibited reduced tannin, better lactic acid, the highest crude fibre, cellulose, lignin, protein, fumaric, L-ascorbic, trans-ferulic and sinapic acids. The comparable and complementary variations suggest the considerable influence of the substrate types, followed by the specific processing-based hydrolysis and biochemical transitions. Thus, compositing the bioprocessed flours based on the unique constituent features for developing functional products from climate-smart edibles may partly be the driver to ameliorating linked risk factors of cardiometabolic diseases.
Collapse
Affiliation(s)
- Yusuf Olamide Kewuyemi
- Food Innovation Research Group, Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg, 2028, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Food Innovation Research Group, Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg, 2028, Gauteng, South Africa.
| |
Collapse
|
6
|
Bhaiyya R, Sharma SC, Singh RP. Biochemical characterization of bifunctional enzymatic activity of a recombinant protein (Bp0469) from Blautia producta ATCC 27340 and its role in the utilization of arabinogalactan oligosaccharides. Int J Biol Macromol 2023; 253:126736. [PMID: 37678698 DOI: 10.1016/j.ijbiomac.2023.126736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Human consumption of larch arabinogalactan has a significant effect on enhancing probiotic microflora in the gut, and it also promotes the production of short-chain fatty acids. Bacterial members of Lachnospiraceae family are important and play significant roles in maintaining our gut health. However, it is less known about biochemistry of members of this family by which they utilize non-cellulosic fiber in the gut. For enhancing this understanding, we studied that B. producta ATCC 27340 grew on arabinogalactan oligosaccharides (AGOs) as compared to polysaccharide form of arabinogalactan. Recombinant protein (Bp0469) was heterologously expressed in Escherichia coli BL21 (DE3) and revealed the optimum pH and temperature at 7.4 in phosphate buffer and 45 °C, respectively. Catalytic efficiency of recombinant Bp0469 for p-nitrophenyl (pNP)-α-L-arabinofuranoside was about half of pNP-β-D-galactopyranoside. It also cleaved natural substrates (lactose, arabinobiose and 3-O-(β-d-galactopyranosyl)-d-galactopyranose) and characterized AGOs in this study. Based on genomic, structural models, and biochemical characteristics, identified Bp0469 is a peculiar enzyme with two distinct domains that cleave α1-5 linked arabinobiose and β-D-Galp-1-3/4 linkages. Overall, the study enhances the knowledge on nutritional perspective of B. producta ATCC 27340 for thriving on non-cellulosic biomass, and identified enzyme can also be used for producing industrial important AGOs.
Collapse
Affiliation(s)
- Raja Bhaiyya
- Department of Industrial Biotechnology, Gujarat Biotechnology University, North-Gate Gujarat International Finance Tec (GIFT)-City, Gandhinagar 382355, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India; Department of Biochemistry, South Campus, Panjab University, Chandigarh 160014, India
| | - Sukesh Chander Sharma
- Department of Biochemistry, South Campus, Panjab University, Chandigarh 160014, India
| | - Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, North-Gate Gujarat International Finance Tec (GIFT)-City, Gandhinagar 382355, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India.
| |
Collapse
|
7
|
Yang H, Chou LY, Hua CC. Effects of Calcium and pH on Rheological Thermal Resistance of Composite Xanthan Gum and High-Methoxyl Apple Pectin Matrices Featuring Dysphagia-Friendly Consistency. Foods 2023; 13:90. [PMID: 38201118 PMCID: PMC10778284 DOI: 10.3390/foods13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
High-methoxyl apple pectin (AP) derived from apple was employed as the main ingredient facilitating rheological modification features in developing dysphagia-friendly fluidized alimentary matrices. Xanthan gum (XG) was also included as a composite counterpart to modify the viscoelastic properties of the thickened system under different thermal processes. The results indicate that AP is extremely sensitive to thermal processing, and the viscosity is greatly depleted under a neutral pH level. Moreover, the inclusion of calcium ions echoed the modification effect on the rheological properties of AP, and both the elastic property and viscosity value were promoted after thermal processing. The modification effect of viscoelastic properties (G' and G″) was observed whne XG was incorporated into the composite formula. Increasing the XG ratio from 7:3 to 6:4 (AP:XG) triggers the rheological transformation from a liquid-like form to a solid-like state, and the viscosity value shows that the AP-XG composite system exhibits better thermal stability after thermal processing. The ambient modifiers of pH (pH < 4) and calcium chloride concentration (7.5%) with an optimal AP-XG ratio of 7:3 led to weak-gel-like behavior (G″ < G'), helping to maintain the texture properties of dysphagia-friendly features similar to those prior to the thermal processing.
Collapse
Affiliation(s)
- Huaiwen Yang
- Department of Food Science, National Chiayi University, Chiayi City 60004, Taiwan
| | - Liang-Yu Chou
- Department of Food Science, National Chiayi University, Chiayi City 60004, Taiwan
| | - Chi-Chung Hua
- Department of Chemical Engineering, National Chung Cheng University, Chiayi City 621301, Taiwan
| |
Collapse
|
8
|
Vlaicu PA, Untea AE, Varzaru I, Saracila M, Oancea AG. Designing Nutrition for Health-Incorporating Dietary By-Products into Poultry Feeds to Create Functional Foods with Insights into Health Benefits, Risks, Bioactive Compounds, Food Component Functionality and Safety Regulations. Foods 2023; 12:4001. [PMID: 37959120 PMCID: PMC10650119 DOI: 10.3390/foods12214001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
This review delves into the concept of nutrition by design, exploring the relationship between poultry production, the utilization of dietary by-products to create functional foods, and their impact on human health. Functional foods are defined as products that extend beyond their basic nutritional value, offering potential benefits in disease prevention and management. Various methods, including extraction, fermentation, enrichment, biotechnology, and nanotechnology, are employed to obtain bioactive compounds for these functional foods. This review also examines the innovative approach of enhancing livestock diets to create functional foods through animal-based methods. Bioactive compounds found in these functional foods, such as essential fatty acids, antioxidants, carotenoids, minerals, vitamins, and bioactive peptides, are highlighted for their potential in promoting well-being and mitigating chronic diseases. Additionally, the review explores the functionality of food components within these products, emphasizing the critical roles of bioaccessibility, bioactivity, and bioavailability in promoting health. The importance of considering key aspects in the design of enhanced poultry diets for functional food production is thoroughly reviewed. The safety of these foods through the establishment of regulations and guidelines was reviewed. It is concluded that the integration of nutrition by design principles empowers individuals to make informed choices that can prioritize their health and well-being. By incorporating functional foods rich in bioactive compounds, consumers can proactively take steps to prevent and manage health issues, ultimately contributing to a healthier society and lifestyle.
Collapse
Affiliation(s)
- Petru Alexandru Vlaicu
- Feed and Food Quality Department, National Research and Development Institute for Animal Nutrition and Biology, 077015 Balotesti, Romania; (A.E.U.); (I.V.); (M.S.); (A.G.O.)
| | | | | | | | | |
Collapse
|
9
|
Rodrigues DB, Veríssimo L, Finimundy T, Rodrigues J, Oliveira I, Gonçalves J, Fernandes IP, Barros L, Heleno SA, Calhelha RC. Chemical and Bioactive Screening of Green Polyphenol-Rich Extracts from Chestnut By-Products: An Approach to Guide the Sustainable Production of High-Added Value Ingredients. Foods 2023; 12:2596. [PMID: 37444334 DOI: 10.3390/foods12132596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Opportunities for the valorisation of agro-industrial residues of the chestnut (Castanea sativa Mill.) production chain have been fostered with the production of multifunctional polyphenol-rich extracts with the potential to be introduced as natural additives or active components in several products. Nonetheless, it is crucial to explore the feasibility of different extracts from the various by-products for these applications through the exhaustive study of their composition and bioactivities without losing sight of the sustainable character of the process. This work aimed at the screening of the phenolic compound composition and bioactivities of different green extracts of chestnut burs, shells and leaves, as the first step to establish their potential application as natural ingredients, primarily as food preservatives. To this end, maceration (MAC) as a conventional extraction method besides ultrasound and microwave-assisted extractions (UAE and MAE) was employed to obtain the extracts from chestnut by-products using water (W) and hydroethanolic solution (HE) as solvents. Phenolic compounds were analysed by HPLC-DAD-(ESI-)MS/MS; the antioxidant capacity was assessed by colourimetric assays, and the antimicrobial activity was evaluated against several strains of food-borne bacteria and fungi. The leaf extracts obtained by MAC-HE and UAE-HE presented the highest concentration of phenolic compounds (70.92 ± 2.72 and 53.97 ± 2.41 mg.g-1 extract dw, respectively), whereas, for burs and shells, the highest recovery of total phenolic compounds was achieved by using UAE-HE and UAE-W (36.87 ± 1.09 and 23.03 ± 0.26 mg.g-1 extract dw, respectively). Bis-HHDP-glucose isomers, chestanin and gallic acid were among the most abundant compounds. Bur extracts (MAC-HE and UAE-HE) generally presented the highest antioxidant capacity as measured by TBARS, while the best results in DPPH and reducing power assays were found for shell extracts (MAE-W and MAC-HE). Promising antibacterial activity was noticed for the aqueous extracts of burs, leaves and hydroethanolic extracts of shells, with emphasis on the MAE-W extract of burs that showed bactericidal activity against E. cloacae, P. aeruginosa and S. aureus (MBC 5 mg.mL-1). Overall, it can be concluded that chestnut by-products, including burs, shells and leaves, are sources of polyphenolic compounds with significant antioxidant and antimicrobial activities. The choice of extraction method and solvent greatly influenced the composition and bioactivity of the extracts. These findings highlight the potential of chestnut by-products for the development of natural additives, particularly for food preservation, while also emphasizing the importance of sustainable utilization of agricultural waste materials. Further research is warranted to optimize extraction techniques and explore additional applications for these valuable bioactive compounds.
Collapse
Affiliation(s)
- Daniele Bobrowski Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lavínia Veríssimo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Tiane Finimundy
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Joana Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Izamara Oliveira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - João Gonçalves
- Tree Flowers Solutions, Lda, Edificio Brigantia Ecopark, Av. Cidade de Léon, 5300-358 Bragança, Portugal
| | - Isabel P Fernandes
- Tree Flowers Solutions, Lda, Edificio Brigantia Ecopark, Av. Cidade de Léon, 5300-358 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Sandrina A Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
10
|
Lamm KW. Issue Leadership: Establishing a Domain for a Food Systems Leadership Model. Foods 2023; 12:2598. [PMID: 37444336 DOI: 10.3390/foods12132598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
A sustainable food system is a fundamental requirement for the ongoing functioning and growth of society. However, despite the critical importance of the food system from both economic and social perspectives, there are several political, environmental, and human capital issues which represent barriers to sustainable production. For example, in the United States, the need for more production capacity to feed a growing population is juxtaposed with a shrinking and aging food system workforce. The nexus of such fundamentally opposed issues represents a situation in which technical solutions may be insufficient. Using a three-round Delphi process with an expert panel, a total of 106 unique leadership competencies or behaviors were identified. The resulting behaviors and competencies were then thematically analyzed using the constant comparative method. The proposed food systems leadership model, named Issue Leadership, includes 39 subthemes and 7 primary themes. The primary themes include action; change; communication; critical thinking, strategic planning and visioning; interpersonal traits and characteristics; leadership skills; and leadership processes. This study establishes the unique context that agriculture and food systems represent and the necessity for leadership models that are competency- and practice-based.
Collapse
Affiliation(s)
- Kevan W Lamm
- Department of Agricultural Leadership, Education & Communication, University of Georgia, Athens, GA 30606, USA
| |
Collapse
|
11
|
de Carvalho NM, Oliveira DL, Costa CM, Pintado ME, Madureira AR. Strategies to Assess the Impact of Sustainable Functional Food Ingredients on Gut Microbiota. Foods 2023; 12:2209. [PMID: 37297454 PMCID: PMC10253045 DOI: 10.3390/foods12112209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Nowadays, it is evident that food ingredients have different roles and distinct health benefits to the consumer. Over the past years, the interest in functional foods, especially those targeting gut health, has grown significantly. The use of industrial byproducts as a source of new functional and sustainable ingredients as a response to such demands has raised interest. However, the properties of these ingredients can be affected once incorporated into different food matrices. Therefore, when searching for the least costly and most suitable, beneficial, and sustainable formulations, it is necessary to understand how such ingredients perform when supplemented in different food matrices and how they impact the host's health. As proposed in this manuscript, the ingredients' properties can be first evaluated using in vitro gastrointestinal tract (GIT) simulation models prior to validation through human clinical trials. In vitro models are powerful tools that mimic the physicochemical and physiological conditions of the GIT, enabling prediction of the potentials of functional ingredients per se and when incorporated into a food matrix. Understanding how newly developed ingredients from undervalued agro-industrial sources behave as supplements supports the development of new and more sustainable functional foods while scientifically backing up health-benefits claims.
Collapse
Affiliation(s)
- Nelson Mota de Carvalho
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (N.M.d.C.); (C.M.C.); (M.E.P.)
| | - Diana Luazi Oliveira
- Research and Innovation Unit—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal;
| | - Célia Maria Costa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (N.M.d.C.); (C.M.C.); (M.E.P.)
| | - Manuela Estevez Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (N.M.d.C.); (C.M.C.); (M.E.P.)
| | - Ana Raquel Madureira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; (N.M.d.C.); (C.M.C.); (M.E.P.)
| |
Collapse
|
12
|
Papapostolou H, Kachrimanidou V, Alexandri M, Plessas S, Papadaki A, Kopsahelis N. Natural Carotenoids: Recent Advances on Separation from Microbial Biomass and Methods of Analysis. Antioxidants (Basel) 2023; 12:antiox12051030. [PMID: 37237896 DOI: 10.3390/antiox12051030] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Biotechnologically produced carotenoids occupy an important place in the scientific research. Owing to their role as natural pigments and their high antioxidant properties, microbial carotenoids have been proposed as alternatives to their synthetic counterparts. To this end, many studies are focusing on their efficient and sustainable production from renewable substrates. Besides the development of an efficient upstream process, their separation and purification as well as their analysis from the microbial biomass confers another important aspect. Currently, the use of organic solvents constitutes the main extraction process; however, environmental concerns along with potential toxicity towards human health necessitate the employment of "greener" techniques. Hence, many research groups are focusing on applying emerging technologies such as ultrasounds, microwaves, ionic liquids or eutectic solvents for the separation of carotenoids from microbial cells. This review aims to summarize the progress on both the biotechnological production of carotenoids and the methods for their effective extraction. In the framework of circular economy and sustainability, the focus is given on green recovery methods targeting high-value applications such as novel functional foods and pharmaceuticals. Finally, methods for carotenoids identification and quantification are also discussed in order to create a roadmap for successful carotenoids analysis.
Collapse
Affiliation(s)
- Harris Papapostolou
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | | | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | - Stavros Plessas
- Laboratory of Food Processing, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, 28100 Argostoli, Greece
| |
Collapse
|
13
|
Lamm AJ, Lamm KW, Trojan S, Sanders CE, Byrd AR. A Needs Assessment to Inform Research and Outreach Efforts for Sustainable Agricultural Practices and Food Production in the Western United States. Foods 2023; 12:foods12081630. [PMID: 37107425 PMCID: PMC10137450 DOI: 10.3390/foods12081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Increasing the adoption of sustainable agricultural practices can help maintain sufficient food production while reducing its environmental impact. To ensure this adoption, it is important to assess the research and training needs of those helping farmers and producers adopt sustainable agricultural practices. However, there is a gap in the literature related to the training needs of producers in the Western United States for sustainable agriculture. Needs assessments help organizations, such as the Western Sustainable Agriculture Research and Education (SARE) program and Cooperative Extension, to address the demonstrated needs of intended audiences. This study presents the results of a needs assessment with the objective of examining training needs and barriers to adoption to help direct extension programming for sustainable agricultural practices in the western region of the United States, to identify gaps, and to inform sustainable agriculture outreach programs. Using a modified Borich method with an inferential statistical method, the discrepancies between the level at which sustainable agricultural practice training competencies "should be addressed" and the level at which they were "currently being addressed" were examined. Competencies with the largest gaps included financial disparity, food waste, and policy/communicating with decision makers. The top three barriers to adopting sustainable agricultural practices included the potential for financial loss, perceived risk of adoption, and time investment associated with adoption. Results indicated that training needs varied and that these were not all on-farm training needs. The results imply that future funding from Western SARE and other groups looking to support sustainable agricultural food system efforts, may wish to focus on requesting proposals for programs that address these competency gaps and barriers in novel and supplementary ways in combination with existing programmatic efforts.
Collapse
Affiliation(s)
- Alexa J Lamm
- Department of Agricultural Leadership, Education & Communication, University of Georgia, Athens, GA 30606, USA
| | - Kevan W Lamm
- Department of Agricultural Leadership, Education & Communication, University of Georgia, Athens, GA 30606, USA
| | - Sara Trojan
- Western Sustainable Agricultural Research and Education, Casper, WY 82601, USA
| | - Catherine E Sanders
- Department of Agricultural and Human Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Allison R Byrd
- Department of Agricultural Leadership, Education & Communication, University of Georgia, Athens, GA 30606, USA
| |
Collapse
|
14
|
Valorization of Punica granatum L. Leaves Extracts as a Source of Bioactive Molecules. Pharmaceuticals (Basel) 2023; 16:ph16030342. [PMID: 36986442 PMCID: PMC10052729 DOI: 10.3390/ph16030342] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Due to a lack of innovative valorization strategies, pomegranate processing generates a significant amount of residues with a negative environmental footprint. These by-products are a rich source of bioactive compounds with functional and medicinal benefits. This study reports the valorization of pomegranate leaves as a source of bioactive ingredients using maceration, ultrasound, and microwave-assisted extraction techniques. The phenolic composition of the leaf extracts was analyzed using an HPLC-DAD-ESI/MSn system. The extracts’ antioxidant, antimicrobial, cytotoxic, anti-inflammatory, and skin-beneficial properties were determined using validated in vitro methodologies. The results showed that gallic acid, (-)-epicatechin, and granatin B were the most abundant compounds in the three hydroethanolic extracts (between 0.95 and 1.45, 0.7 and 2.4, and 0.133 and 3.0 mg/g, respectively). The leaf extracts revealed broad-spectrum antimicrobial effects against clinical and food pathogens. They also presented antioxidant potential and cytotoxic effects against all tested cancer cell lines. In addition, tyrosinase activity was also verified. The tested concentrations (50–400 µg/mL) ensured a cellular viability higher than 70% in both keratinocyte and fibroblast skin cell lines. The obtained results indicate that the pomegranate leaves could be used as a low-cost source of value-added functional ingredients for potential nutraceutical and cosmeceutical applications.
Collapse
|
15
|
Jaski JM, da Cruz RMS, Pimentel TC, Stevanato N, da Silva C, Barão CE, Cardozo-Filho L. Simultaneous Extraction of Bioactive Compounds from Olea europaea L. Leaves and Healthy Seed Oils Using Pressurized Propane. Foods 2023; 12:948. [PMID: 36900465 PMCID: PMC10000711 DOI: 10.3390/foods12050948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Olive leaves (OL) are products of olive cultivation with a high commercial value because they contain valuable bioactive compounds. Chia and sesame seeds have a high functional value because of their attractive nutritional properties. When combined in the extraction process, the two products constitute a product of high quality. The use of pressurized propane in vegetable oil extraction is advantageous because it provides solvent-free oil. This study aimed to combine two high-quality products to obtain oils with a unique combination of attractive nutritional properties and high levels of bioactive compounds. The mass percentage yields of the OL extracts with chia and sesame oils were 23.4% and 24.8%, respectively. The fatty acid profiles of the pure oils and their respective OL-enriched oils were similar. There was an aggregation of the 35% and 32% (v/v) bioactive OL compounds in chia and sesame oils, respectively. OL oils exhibited superior antioxidant capacities. The induction times of the OL extracts with the sesame and chia oils increased by 73% and 4.4%, respectively. Incorporating OL active compounds in healthy edible vegetable oils using propane as a solvent promotes the reduction of lipid oxidation, improves the lipid profiles and health indices of the oils, and forms a product with attractive nutritional characteristics.
Collapse
Affiliation(s)
- Jonas Marcelo Jaski
- Department of Agronomy, State University of Maringa (UEM), Av. Colombo, 5790, Maringa 87020-900, PR, Brazil
| | | | - Tatiana Colombo Pimentel
- Federal Institute of Parana, Paranavai Campus, Av. Jose Felipe Tequinha, 1400, Paranavai 87703-536, PR, Brazil
| | - Natalia Stevanato
- Department of Chemical Engineering, State University of Maringa (UEM), Av. Colombo, 5790, Maringá 87020-900, PR, Brazil
| | - Camila da Silva
- Department of Chemical Engineering, State University of Maringa (UEM), Av. Colombo, 5790, Maringá 87020-900, PR, Brazil
| | - Carlos Eduardo Barão
- Department of Agronomy, State University of Maringa (UEM), Av. Colombo, 5790, Maringa 87020-900, PR, Brazil
- Federal Institute of Parana, Paranavai Campus, Av. Jose Felipe Tequinha, 1400, Paranavai 87703-536, PR, Brazil
| | - Lucio Cardozo-Filho
- Department of Agronomy, State University of Maringa (UEM), Av. Colombo, 5790, Maringa 87020-900, PR, Brazil
- Research Center, Centro Universitario Fundacao de Ensino Octavio Bastos (UNIFEOB), São Joao da Boa Vista 13874-149, SP, Brazil
| |
Collapse
|
16
|
Resende LM, Franca AS. Jabuticaba ( Plinia sp.) Peel as a Source of Pectin: Characterization and Effect of Different Extraction Methods. Foods 2022; 12:foods12010117. [PMID: 36613333 PMCID: PMC9818410 DOI: 10.3390/foods12010117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The peel of jabuticaba, a small fruit native to Brazil, has been shown to be a potential source of antioxidants and soluble dietary fibers. In this study, flours prepared from these peels were evaluated as a source of pectin. Different extraction methods were employed: ultrasound (US) extraction followed by low temperature heating (40 °C); in a microwave (MW) without (method 1) or with cellulase (method 2) or hemicellulase (method 3); or in a water bath (method 4). Pectin yields ranged from approximately 18% for methods 1 and 4 up to 22% for enzyme-assisted extractions (methods 2 and 3). Methods that did not employ enzymes resulted in low amounts of methoxyl pectins, as opposed to high amounts of methoxyl pectins obtained after enzyme treatment. Cyanidin-3-O-glucoside (C3G) and ellagic acid were the main phenolic compounds found in jabuticaba peel pectins, with higher C3G levels obtained with enzyme-free extraction (methods 1 and 4). All pectins from jabuticaba peel presented a reddish tone, good emulsifying properties and high swelling capacity. The pectin extracted using US+MW+cellulase (method 2) presented better emulsifying performance (higher values of emulsifying activity and emulsion stability), more effective than commercially available citrus pectin.
Collapse
Affiliation(s)
- Laís M. Resende
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Adriana S. Franca
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
- DEMEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
- Correspondence:
| |
Collapse
|