1
|
Li B, Yang Y, Kou X, Yang M, Normakhamatov N, Alasmari AF, Xin B, Tan Y. Water-soluble polysaccharides extracted from Enteromorpha prolifera/PVA composite film functionalized as ε-polylysine with improved mechanical and antibacterial properties. Int J Biol Macromol 2024; 282:136697. [PMID: 39427792 DOI: 10.1016/j.ijbiomac.2024.136697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The issue of environmental protection has received sustained and widespread attention. In order to reduce environmental pollution related to traditional plastics, it is an incessant demand to design novel environment-friendly food packaging materials with excellent performance. Sulfated polysaccharide extracted from the "green tide" marine pollution Enteromorpha prolifera (SPE) has been innovatively transformed into a film-forming material for better utilization. The insufficient mechanical properties and limited functionalities, however, hinder its wide application. In this study, polyvinyl alcohol (PVA) was blended to enhance its mechanical properties and ε-polylysine (ε-PL) was incorporated to endow it with antimicrobial performance. A novel and biodegradable film composed of SPE, PVA, and ε-PL was fabricated by casting method. We further determined the physicochemical properties of composited films. Mechanical performance test revealed the tensile strength of SPE-PVA-PL films increased from 5.56 MPa to 6.65 MPa and the E% increased from 128.8 % to 246.9 % compared with that of SPE-PVA films. Antimicrobial tests showed the excellent antibacterial activity of SPE-PVA-PL films against representative microbial species, Staphylococcus aureus and Escherichia coli. The results of this study suggested that the SPE-based composite film has the potential to be used as a potential food packaging and wound dressing materials.
Collapse
Affiliation(s)
- Bing Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Yingying Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Xinhua Kou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Manli Yang
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Nodirali Normakhamatov
- Tashkent Pharmaceutical Institute, Ministry of the Health of Uzbekistan, Aybek str, 45, Tashkent 100015, Uzbekistan
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bingchang Xin
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China.
| | - Yulong Tan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China.
| |
Collapse
|
2
|
Yimam MA, Andreini M, Carnevale S, Muscaritoli M. The role of algae, fungi, and insect-derived proteins and bioactive peptides in preventive and clinical nutrition. Front Nutr 2024; 11:1461621. [PMID: 39449824 PMCID: PMC11499197 DOI: 10.3389/fnut.2024.1461621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
The current global trend in the nutrition, epidemiologic and demographic transitions collectively alarms the need to pursue a sustainable protein diet that respects ecosystem and biodiversity from alternative sources, such as algae, fungi and edible insects. Then, changing the nutrition reality is extremely important to impede the global syndemic of obesity, undernutrition and climate change. This review aims to synthesize the published literature on the potential roles of alternative proteins and their derived bioactive peptides in preventive and clinical nutrition, identify research gaps and inform future research areas. Google Scholar and PubMed databases from their inception up to 30 June 2024 were searched using keywords to access pertinent articles published in English language for the review. Overall, proteins derived from algae, fungi, and edible insects are high-quality proteins as animal sources and demonstrate significant potential as a sustainable source of bioactive peptides, which are metabolically potent and have negligible adverse effects. They show promise to prevent and treat diseases associated with oxidative stress, obesity, diabetes, cancer, cardiovascular disease (especially hypertension), and neurodegenerative diseases. Given the abundance of algae, fungi and insect peptides performed in vitro or in vivo animals, further clinical studies are needed to fully establish their safety, efficacy and practical application in preventive and clinical nutrition. Additionally, social and behavioral change communication strategies would be important to increase health awareness of nutritional benefits and promote consumer acceptance of alternative protein sources.
Collapse
Affiliation(s)
- Mohammed Ahmed Yimam
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Pavia, Italy
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- Department of Public Health, College of Health Science, Woldia University, Woldia, Ethiopia
| | - Martina Andreini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Mirzapour-Kouhdasht A, Garcia-Vaquero M, Huang JY. Algae-derived compounds: Bioactivity, allergenicity and technologies enhancing their values. BIORESOURCE TECHNOLOGY 2024; 406:130963. [PMID: 38876282 DOI: 10.1016/j.biortech.2024.130963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
As a rapidly growing source of human nutrients, algae biosynthesize diverse metabolites which have promising bioactivities. However, the potential allergenicity of algal components hinder their widespread adoption. This review provides a comprehensive review of various macro and micronutrients derived from algal biomass, with particular focus on bioactive compounds, including peptides, polyphenols, carotenoids, omega-3 fatty acids and phycocyanins. The approaches used to produce algal bioactive compounds and their health benefits (antioxidant, antidiabetic, cardioprotective, anti-inflammatory and immunomodulatory) are summarised. This review particularly focuses on the state-of-the-art of precision fermentation, encapsulation, cold plasma, high-pressure processing, pulsed electric field, and subcritical water to reduce the allergenicity of algal compounds while increasing their bioactivity and bioavailability. By providing insights into current challenges of algae-derived compounds and opportunities for advancement, this review contributes to the ongoing discourse on maximizing their application potential in the food nutraceuticals, and pharmaceuticals industries.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, D04V1W8 Dublin, Ireland
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
4
|
Wen H, Leong PM, Wang X, Li D. Isolation and Characterization of n-3 Polyunsaturated Fatty Acids in Enteromorpha prolifera Lipids and Their Preventive Effects on Ulcerative Colitis in C57BL/6J Mice. Foods 2023; 13:46. [PMID: 38201073 PMCID: PMC10778640 DOI: 10.3390/foods13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Enteromorpha prolifera (EP) is a green alga that causes green bloom worldwide. This study aimed to isolate and identify n-3 polyunsaturated fatty acids (PUFAs) from EP oil obtained via supercritical fluid extraction (SFE) and to explore its preventive effects against dextran sodium sulfate (DSS)-induced ulcerative colitis in C57BL/6J mice. In EP oil, we found the novel n-3 polyunsaturated fatty acid C16:4n-3 and two unusual fatty acids C18:4n-3 and C16:3n-3, using GC-MS. The administration of EP oil reduced histopathological of symptoms colitis and the shortening of the colon length. Pro-inflammatory cytokines of IL-6 and TNF-α in serum of EP oil treatment were lower than DSS treatment (by 37.63% and 83.52%), and IL-6 gene expression in the colon was lower in than DSS group by 48.28%, and IL-10 in serum was higher than DSS group by 2.88-fold. Furthermore, the protein expression of p-STAT3 by the EP oil treatment was significantly reduced compared with DSS treatment group by 73.61%. Lipidomics study suggested that phosphatidylcholine and phosphatidylethanolamine were positively associated with the anti-inflammatory cytokine IL-10, while cholesteryl ester and sphingomyelin were negatively related to inflammation cytokines in the EP oil group. The present results indicated that EP oil rich in n-3 PUFA contains a novel fatty acid C16:4n-3, as well as two uncommon fatty acids C18:4n-3 and C16:3n-3. EP oil could prevent DSS-induced ulcerative colitis by regulating the JAK/STAT pathway and lipid metabolism.
Collapse
Affiliation(s)
- Haichao Wen
- Institute of Nutrition and Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.W.); (X.W.)
- School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| | - Pooi Mun Leong
- School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| | - Xincen Wang
- Institute of Nutrition and Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.W.); (X.W.)
- School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.W.); (X.W.)
- School of Public Health, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| |
Collapse
|
5
|
Rybczyńska-Tkaczyk K, Grenda A, Jakubczyk A, Krawczyk P. Natural Bacterial and Fungal Peptides as a Promising Treatment to Defeat Lung Cancer Cells. Molecules 2023; 28:molecules28114381. [PMID: 37298856 DOI: 10.3390/molecules28114381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the increasing availability of modern treatments, including personalized therapies, there is a strong need to search for new drugs that will be effective in the fight against cancer. The chemotherapeutics currently available to oncologists do not always yield satisfactory outcomes when used in systemic treatments, and patients experience burdensome side effects during their application. In the era of personalized therapies, doctors caring for non-small cell lung cancer (NSCLC) patients have been given a powerful weapon, namely molecularly targeted therapies and immunotherapies. They can be used when genetic variants of the disease qualifying for therapy are diagnosed. These therapies have contributed to the extension of the overall survival time in patients. Nevertheless, effective treatment may be hindered in the case of clonal selection of tumor cells with acquired resistance mutations. The state-of-the-art therapy currently used in NSCLC patients is immunotherapy targeting the immune checkpoints. Although it is effective, some patients have been observed to develop resistance to immunotherapy, but its cause is still unknown. Personalized therapies extend the lifespan and time to cancer progression in patients, but only those with a confirmed marker qualifying for the treatment (gene mutations/rearrangements or PD-L1 expression on tumor cells) can benefit from these therapies. They also cause less burdensome side effects than chemotherapy. The article is focused on compounds that can be used in oncology and produce as few side effects as possible. The search for compounds of natural origin, e.g., plants, bacteria, or fungi, exhibiting anticancer properties seems to be a good solution. This article is a literature review of research on compounds of natural origin that can potentially be used as part of NSCLC therapies.
Collapse
Affiliation(s)
- Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, The University of Life Sciences, Leszczyńskiego Street 7, 20-069 Lublin, Poland
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego Street 8, 20-954 Lublin, Poland
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna Street 8, 20-704 Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego Street 8, 20-954 Lublin, Poland
| |
Collapse
|