1
|
Xue H, Tang Y, Zha M, Xie K, Tan J. The structure-function relationships and interaction between polysaccharides and intestinal microbiota: A review. Int J Biol Macromol 2024; 291:139063. [PMID: 39710020 DOI: 10.1016/j.ijbiomac.2024.139063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
The gut microbiota, as a complex ecosystem, can affect many physiological aspects of the host's diet, disease development, drug metabolism, and immune system regulation. Polysaccharides have various biological activities including antioxidant, anti-tumor, and regulating gut microbiota, etc. Polysaccharides cannot be degraded by human digestive enzymes. However, the interaction between gut microbiota and polysaccharides can lead to the degradation and utilization of polysaccharides. Disordered intestinal flora leads to diseases such as diabetes, hyperlipidemia, tumors, and diarrhea. Notably, polysaccharides can regulate the gut microbiota, promote the proliferation of probiotics and the SCFAs production, and thus improve the related-diseases and maintain body health. The relationship between polysaccharides and gut microbiota is gradually becoming clear. Nevertheless, the structure-function relationships between polysaccharides and gut microbiota still need further exploration. Hence, this paper systematically reviews the structure-function relationships between polysaccharides and gut microbiota from four aspects including molecular weight, glycosidic bonds, monosaccharide composition, and advanced structure. Moreover, this review outlines the effect of polysaccharides on gut microbiota metabolism and improves diseases by regulating gut microbiota. Furthermore, this article introduces the impact of gut microbiota on polysaccharide metabolism. The findings can provide the scientific basis for in-depth research on body health and reasonable diet.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yingqi Tang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Min Zha
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Jiaqi Tan
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China.
| |
Collapse
|
2
|
Zhang N, Zhang C, Zhang Y, Ma Z, Li L, Liu W. Distinct prebiotic effects of polysaccharide fractions from Polygonatum kingianum on gut microbiota. Int J Biol Macromol 2024; 279:135568. [PMID: 39270897 DOI: 10.1016/j.ijbiomac.2024.135568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
This study investigated the physicochemical properties, digestive stability, and in vitro fermentation behavior of Polygonatum kingianum polysaccharide (PKP) fractions (PKP60, PKP70, PKP80) obtained through graded ethanol precipitation. High-performance gel permeation chromatography revealed significant molecular weight differences among the fractions, while reverse-phase high-performance liquid chromatography indicated consistent monosaccharide types with variations in their proportions. Uronic acid analysis confirmed that all polysaccharide fractions met the criteria for neutral polysaccharides. Congo red staining confirmed the presence of a triple-helix structure in all PKP fractions. Comprehensive analysis demonstrated that these fractions remained stable during in vitro digestion, as evidenced by consistent molecular weights and total carbohydrate content, with no significant production of free monosaccharides or reducing sugars. All PKP fractions were fermented by gut microbiota, resulting in the production of short-chain fatty acids. Beta diversity and structural analyses of gut microbiota revealed distinct modulatory effects associated with each PKP fraction. The PKP fractions promoted probiotic growth, especially PKP70, which significantly enhanced Bifidobacterium proliferation, indicating strong prebiotic potential. These findings underscore the importance of isolation and purification methods in determining the functionality and gut microbiota-modulating effects of plant-derived polysaccharides, emphasizing the need for in-depth research that extends beyond merely evaluating their source.
Collapse
Affiliation(s)
- Nan Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yu Zhang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhongshuai Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Wei Liu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
3
|
Guo F, Jing L, Xu Y, Zhang K, Li Y, Sun N, Liu P, Zhang H. Gut microbiota and inflammatory factor characteristics in major depressive disorder patients with anorexia. BMC Psychiatry 2024; 24:334. [PMID: 38698338 PMCID: PMC11067108 DOI: 10.1186/s12888-024-05778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND This study aimed to explore the gut microbiota and inflammatory factor characteristics in major depressive disorder (MDD) patients with anorexia and to analyze the correlation between gut microbiota and inflammatory factors, anorexia, and HAMD scores. METHODS 46 MDD patients and 46 healthy controls (HC) were included in the study. The 46 MDD patients were divided into two groups according to whether they had anorexia:20 MDD without anorexia (MDA0 group) and 26 MDD with anorexia (MDA1 group). We used the Hamilton Depression Scale-24 (HAMD-24) to evaluate the depression status of all participants and 16 S ribosomal RNA (16 S rRNA)sequencing to evaluate the composition of the gut microbiota. Inflammatory factors in peripheral blood such as C-reactive protein (CRP) were detected using enzyme-linked immunosorbent assay (ELISA). Spearman's correlation analysis was used to evaluate the correlation between gut microbiota and inflammatory factors, HAMD scores, and anorexia. RESULTS 1). CRP was significantly higher in the MDA0, MDA1, than HC. 2). An analysis of α-diversity shows: the Simpson and Pielou indices of the HC group are higher than the MDA1 group (P < 0.05). 3). The β-diversity analysis shows differences in the composition of microbial communities between the MDA0, MDA1, and HC group. 4). A correlation analysis showed that Blautia positively correlated with anorexia, HAMD scores, and CRP level, whereas Faecalibacterium, Bacteroides, Roseburia, and Parabacteroides negatively correlated with anorexia, HAMD scores, and CRP level. 5). The receiver operating characteristic (ROC) curve was drawn using the differential bacterial genera between MDD patients with or without anorexia as biomarkers to identify whether MDD patients were accompanied with anorexia, and its area under curve (AUC) was 0.85. The ROC curve was drawn using the differential bacterial genera between MDD patients with anorexia and healthy controls as biomarkers to diagnose MDD patients with anorexia, with its AUC was 0.97. CONCLUSION This study suggested that MDD patients with anorexia had a distinct gut microbiota compared to healthy individuals, with higher level of CRP. Blautia was more abundant in MDD patients with anorexia and positively correlated with CRP, HAMD scores, and anorexia. The gut microbiota might have influenced MDD and anorexia through the inflammatory factor CRP.
Collapse
Affiliation(s)
- Fengtao Guo
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Medical University, Taiyuan, 030001, China
- Yanhu District Branch, The First Hospital of Shanxi Medical University, Yuncheng, 044000, China
| | - Lin Jing
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Medical University, Taiyuan, 030001, China
| | - Yunfan Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Medical University, Taiyuan, 030001, China
| | - Kun Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Medical University, Taiyuan, 030001, China
| | - Ying Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Medical University, Taiyuan, 030001, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Medical University, Taiyuan, 030001, China.
| | - Huanhu Zhang
- Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| |
Collapse
|
4
|
Zhang X, Wang J, Zhang T, Li S, Liu J, Li M, Lu J, Zhang M, Chen H. Updated Progress on Polysaccharides with Anti-Diabetic Effects through the Regulation of Gut Microbiota: Sources, Mechanisms, and Structure-Activity Relationships. Pharmaceuticals (Basel) 2024; 17:456. [PMID: 38675416 PMCID: PMC11053653 DOI: 10.3390/ph17040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes mellitus (DM) is a common chronic metabolic disease worldwide. The disturbance of the gut microbiota has a complex influence on the development of DM. Polysaccharides are one type of the most important natural components with anti-diabetic effects. Gut microbiota can participate in the fermentation of polysaccharides, and through this, polysaccharides regulate the gut microbiota and improve DM. This review begins by a summary of the sources, anti-diabetic effects and the gut microbiota regulation functions of natural polysaccharides. Then, the mechanisms of polysaccharides in regulating the gut microbiota to exert anti-diabetic effects and the structure-activity relationship are summarized. It is found that polysaccharides from plants, fungi, and marine organisms show great hypoglycemic activities and the gut microbiota regulation functions. The mechanisms mainly include repairing the gut burrier, reshaping gut microbiota composition, changing the metabolites, regulating anti-inflammatory activity and immune function, and regulating the signal pathways. Structural characteristics of polysaccharides, such as monosaccharide composition, molecular weight, and type of glycosidic linkage, show great influence on the anti-diabetic activity of polysaccharides. This review provides a reference for the exploration and development of the anti-diabetic effects of polysaccharides.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China;
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| |
Collapse
|
5
|
Xia M, Hua Z, Zhao Y, Zhang G, Hou X, Yang G, Liu S, Fang Y. Improvement of Urolithin A Yield by In Vitro Cofermentation of Streptococcus thermophilus FUA329 with Human Gut Microbiota from Different Urolithin Metabotypes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3008-3016. [PMID: 38301119 DOI: 10.1021/acs.jafc.3c09734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Streptococcus thermophilus FUA329 converts ellagic acid (EA) to urolithin A (Uro-A), which is not autonomously converted by the gut microbiota to produce highly bioavailable and multibiologically active Uro-A in urolithin metabotype 0 (UM-0) populations. We consider that Streptococcus thermophilus FUA329 has the potential to be developed as a probiotic. Therefore, we utilized S. thermophilus FUA329 for in vitro cofermentation with gut microbiota. The results revealed that strain FUA329 increased the production of EA-converted Uro-A during in vitro cofermentation with the human gut microbiota of different urolithin metabotypes (UMs), with a significant increase in the production of Uro-A in the experimental group of UM-0. In addition, changes in the in vitro cofermentation microbial community were determined using high-throughput sequencing. Strain FUA329 modulated the structure and composition of the gut microbiota in different UMs, thereby significantly increasing the abundance of beneficial microbiota in the gut microbiota while decreasing the abundance of harmful microbiota. Of greatest interest was the significant increase in the abundance of Actinobacteria phylum after the cofermentation of strain FUA329 with UM-0 gut microbiota, which might be related to the significant increase in the production of Uro-A.
Collapse
Affiliation(s)
- Mengjie Xia
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Ocean Food and Biochemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ziyan Hua
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Ocean Food and Biochemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaling Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Ocean Food and Biochemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Gewen Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Ocean Food and Biochemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Ocean Food and Biochemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Ocean Food and Biochemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Ocean Food and Biochemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- China Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Ocean Food and Biochemical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
6
|
Zhou B, Liu P, Yao X, Cao H, Zhu H, Wang Q, Liu Y, Fang M, Wu Y, Gong Z. Hepatoprotective effects of peach gum polysaccharides against alcoholic liver injury: moderation of oxidative stress and promotion of lipid metabolism. Front Nutr 2024; 10:1325450. [PMID: 38283909 PMCID: PMC10811791 DOI: 10.3389/fnut.2023.1325450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024] Open
Abstract
Natural polysaccharides extracted from plants have received increasing attention due to their rich bioactivity. In our study, peach gum polysaccharides (PGPs) were extracted by water extraction-alcohol precipitation method. PGPs are typical pyranose polysaccharides with a mean molecular weight of 3.68 × 106 g/mol. The antioxidant activity and hepatoprotective capacity of PGPs were studied. In vitro, assays showed that PGPs scavenged DPPH, OH, and O2- in a dose-dependent manner. PGPs exhibited antioxidative properties against alcohol-induced HL7702 cells, as evidenced by the normalization of MDA, SOD, ROS, and GSH levels. To further elucidate the hepatoprotective mechanism of PGPs, we carried out in vivo experiments in male mice. PGPs exerted hepatoprotective effects in alcohol liver disease (ALD) mice by exerting antioxidant effects, decreasing the inflammatory response and modulating lipid metabolism. In addition, metabolomic analysis indicated that PGPs mainly regulate D-glutamine and D-glutamate metabolism, alanine, aspartate and glutamate metabolism, and arginine biosynthesis to promote hepatic metabolism and maintain body functions. Overall, this study revealed that the hepatoprotective mechanism of PGPs against ALD might be associated with the regulation of oxidative stress and lipid metabolism.
Collapse
Affiliation(s)
- Bingjie Zhou
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Food Safety Research Center for Key Research Institute of Humanities and Social Sciences of Hubei Province, Wuhan Polytechnic University, Wuhan, China
| | - Pinpin Liu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Food Safety Research Center for Key Research Institute of Humanities and Social Sciences of Hubei Province, Wuhan Polytechnic University, Wuhan, China
| | - Xiangao Yao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Food Safety Research Center for Key Research Institute of Humanities and Social Sciences of Hubei Province, Wuhan Polytechnic University, Wuhan, China
| | - Huijie Cao
- Suizhou Center for Disease Control and Prevention, Hubei Province, China
| | - Hang Zhu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Food Safety Research Center for Key Research Institute of Humanities and Social Sciences of Hubei Province, Wuhan Polytechnic University, Wuhan, China
| | - Qiao Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Food Safety Research Center for Key Research Institute of Humanities and Social Sciences of Hubei Province, Wuhan Polytechnic University, Wuhan, China
| | - Yan Liu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Food Safety Research Center for Key Research Institute of Humanities and Social Sciences of Hubei Province, Wuhan Polytechnic University, Wuhan, China
| | - Min Fang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Food Safety Research Center for Key Research Institute of Humanities and Social Sciences of Hubei Province, Wuhan Polytechnic University, Wuhan, China
| | - Yongning Wu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Food Safety Research Center for Key Research Institute of Humanities and Social Sciences of Hubei Province, Wuhan Polytechnic University, Wuhan, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiyong Gong
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), Food Safety Research Center for Key Research Institute of Humanities and Social Sciences of Hubei Province, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
7
|
Silva FCO, Malaisamy A, Cahú TB, de Araújo MIF, Soares PAG, Vieira AT, Dos Santos Correia MT. Polysaccharides from exudate gums of plants and interactions with the intestinal microbiota: A review of vegetal biopolymers and prediction of their prebiotic potential. Int J Biol Macromol 2024; 254:127715. [PMID: 37918599 DOI: 10.1016/j.ijbiomac.2023.127715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Polysaccharides in plant-exuded gums are complex biopolymers consisting of a wide range of structural variability (linkages, monosaccharide composition, substituents, conformation, chain length and branching). The structural features of polysaccharides confer the ability to be exploited in different industrial sectors and applications involving biological systems. Moreover, these characteristics are attributed to a direct relationship in the process of polysaccharide enzymatic degradation by the fermentative action in the gut microbiota, through intrinsic interactions connecting bacterial metabolism and the production of various metabolites that are associated with regulatory effects on the host homeostasis system. Molecular docking analysis between bacterial target proteins and arabinogalactan-type polysaccharide obtained from gum arabic allowed the identification of intermolecular interactions provided bacterial enzymatic mechanism for the degradation of several arabinogalactan monosaccharide chains, as a model for the study and prediction of potential fermentable polysaccharide. This review discusses the main structural characteristics of polysaccharides from exudate gums of plants and their interactions with the intestinal microbiota.
Collapse
Affiliation(s)
- Francisca Crislândia Oliveira Silva
- Department of Biochemistry, Biotechnology Laboratory (LaBioTec), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - University City, CEP 50.670-901 Recife, PE, Brazil
| | - Arunkumar Malaisamy
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Thiago Barbosa Cahú
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), University City, CEP 21941-913 Rio de Janeiro, RJ, Brazil
| | - Maria Isabela Ferreira de Araújo
- Department of Biochemistry, Biotechnology Laboratory (LaBioTec), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - University City, CEP 50.670-901 Recife, PE, Brazil
| | - Paulo Antônio Galindo Soares
- Department of Biochemistry, Biotechnology Laboratory (LaBioTec), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - University City, CEP 50.670-901 Recife, PE, Brazil
| | - Angélica Thomaz Vieira
- Department of Biochemistry and Immunology, Laboratory of Microbiota and Immunomodulation (LMI), Federal University of Minas Gerais (UFMG), Antonio Carlos, 6627 - Pampulha, CEP 30.161-970 Belo Horizonte, MG, Brazil
| | - Maria Tereza Dos Santos Correia
- Department of Biochemistry, Glycoprotein Laboratory (BIOPROT), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - University City, CEP 50.670-901 Recife, PE, Brazil.
| |
Collapse
|
8
|
Rehman S, Gora AH, Abdelhafiz Y, Dias J, Pierre R, Meynen K, Fernandes JMO, Sørensen M, Brugman S, Kiron V. Potential of algae-derived alginate oligosaccharides and β-glucan to counter inflammation in adult zebrafish intestine. Front Immunol 2023; 14:1183701. [PMID: 37275890 PMCID: PMC10235609 DOI: 10.3389/fimmu.2023.1183701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/18/2023] [Indexed: 06/07/2023] Open
Abstract
Alginate oligosaccharides (AOS) are natural bioactive compounds with anti-inflammatory properties. We performed a feeding trial employing a zebrafish (Danio rerio) model of soybean-induced intestinal inflammation. Five groups of fish were fed different diets: a control (CT) diet, a soybean meal (SBM) diet, a soybean meal+β-glucan (BG) diet and 2 soybean meal+AOS diets (alginate products differing in the content of low molecular weight fractions - AL, with 31% < 3kDa and AH, with 3% < 3kDa). We analyzed the intestinal transcriptomic and plasma metabolomic profiles of the study groups. In addition, we assessed the expression of inflammatory marker genes and histological alterations in the intestine. Dietary algal β-(1, 3)-glucan and AOS were able to bring the expression of certain inflammatory genes altered by dietary SBM to a level similar to that in the control group. Intestinal transcriptomic analysis indicated that dietary SBM changed the expression of genes linked to inflammation, endoplasmic reticulum, reproduction and cell motility. The AL diet suppressed the expression of genes related to complement activation, inflammatory and humoral response, which can likely have an inflammation alleviation effect. On the other hand, the AH diet reduced the expression of genes, causing an enrichment of negative regulation of immune system process. The BG diet suppressed several immune genes linked to the endopeptidase activity and proteolysis. The plasma metabolomic profile further revealed that dietary SBM can alter inflammation-linked metabolites such as itaconic acid, taurochenodeoxycholic acid and enriched the arginine biosynthesis pathway. The diet AL helped in elevating one of the short chain fatty acids, namely 2-hydroxybutyric acid while the BG diet increased the abundance of a vitamin, pantothenic acid. Histological evaluation revealed the advantage of the AL diet: it increased the goblet cell number and length of villi of the intestinal mucosa. Overall, our results indicate that dietary AOS with an appropriate amount of < 3kDa can stall the inflammatory responses in zebrafish.
Collapse
Affiliation(s)
- Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Adnan H. Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Ronan Pierre
- CEVA (Centre d’Etude et de Valorisation des Algues), Pleubian, France
| | - Koen Meynen
- Kemin Aquascience, Division of Kemin Europa N.V., Herentals, Belgium
| | | | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Sylvia Brugman
- Animal Sciences Group, Host Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|