1
|
Yang X, Liu W, Zhang X, Sun M, Yi H, Liao S, Xiang R, Zhang H, Yang Q, Mori H. Glycerol-derived reuterin regulates human intestinal microbiota and metabolites. Front Microbiol 2024; 15:1454408. [PMID: 39493857 PMCID: PMC11527728 DOI: 10.3389/fmicb.2024.1454408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Reuterin, a mixture of different forms of 3-hydroxypropanal (3-HPA), including HPA hydrate and HPA dimer, is an antimicrobial compound converted from glycerol by Lactobacillus reuteri and other strains. Although its antimicrobial function may be related to its interaction with thiol groups, its temperature stability and effect on the gut environment remain unclear. The present study evaluated the antimicrobial effects and activity of reuterin against Escherichia coli and Salmonella typhimurium. Utilization of a reliable in vitro gut microbiome fermentation system revealed that reuterin has a modulatory effect on the gut microbial community. Reuterin treatment completely inhibited H2 and NH3 production in the gut and significantly enhanced the synthesis of branched short-chain fatty acids. 16s rRNA sequencing indicated that reuterin promoted the growth of Proteobacteria and Bacteroidetes in the in vitro system and significantly modulated gut microbiota composition.
Collapse
Affiliation(s)
- Xi Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoling Zhang
- ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Minhua Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch of Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch of Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Rong Xiang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch of Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Hirotada Mori
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
2
|
Niboucha N, Jubinville É, Péloquin L, Clop A, Labrie S, Goetz C, Fliss I, Jean J. Reuterin Enhances the Efficacy of Peracetic Acid Against Multi-species Dairy Biofilm. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10351-y. [PMID: 39264555 DOI: 10.1007/s12602-024-10351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Biofilms may contain pathogenic and spoilage bacteria and can become a recurring problem in the dairy sector, with a negative impact on product quality and consumer health. Peracetic acid (PAA) is one of the disinfectants most frequently used to control biofilm formation and persistence. Though effective, it cannot be used at high concentrations due to its corrosive effect on certain materials and because of toxicity concerns. The aim of this study was to test the possibility of PAA remaining bactericidal at lower concentrations by using it in conjunction with reuterin (3-hydroxypropionaldehyde). We evaluated the efficacy of PAA in pure form or as BioDestroy®, a PAA-based commercial disinfectant, on three-species biofilms formed by dairy-derived bacteria, namely Pseudomonas azotoformans PFlA1, Serratia liquefaciens Sl-LJJ01, and Bacillus licheniformis Bl-LJJ01. Minimum inhibitory concentrations of the three agents were determined for each bacterial species and the fractional inhibitory concentrations were then calculated using the checkerboard assay. The minimal biofilm eradication concentration (MBEC) of each antibacterial combination was then calculated against mixed-species biofilm. PAA, BioDestroy®, and reuterin showed antibiofilm activity against all bacteria within the mixed biofilm at respectively 760 ppm, 450 ppm, and 95.6 mM. The MBEC was lowered significantly to 456 ppm, 337.5 ppm, and 71.7 mM, when exposed to reuterin for 16 h followed by contact with disinfectant. Combining reuterin with chemical disinfection shows promise in controlling biofilm on food contact surfaces, especially for harsh or extended treatments. Furthermore, systems with reuterin encapsulation and nanotechnologies could be developed for sustainable antimicrobial efficacy without manufacturing disruptions.
Collapse
Affiliation(s)
- Nissa Niboucha
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Éric Jubinville
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Laurence Péloquin
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Amandine Clop
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Steve Labrie
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Coralie Goetz
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Ismaïl Fliss
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada
| | - Julie Jean
- Département Des Sciences Des Aliments, Université Laval, Québec, QC, G1V 0A6, Canada.
- Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
3
|
Todorov SD, Alves VF, Popov I, Weeks R, Pinto UM, Petrov N, Ivanova IV, Chikindas ML. Antimicrobial Compounds in Wine. Probiotics Antimicrob Proteins 2024; 16:763-783. [PMID: 37855943 DOI: 10.1007/s12602-023-10177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Ipsum vinum est potestas et possession (wine itself is power and possession). Wine is a complex system that triggers multisensory cognitive stimuli. Wine and its consumption are thoroughly intertwined with the development of human society. The beverage was appreciated in many ancient mythologies and plays an essential part in Christianity and rituals to this day. Wine has been said to enlighten and inspire artists and has even been prohibited by law and some religions, but has nevertheless played a role in human civilizations since the beginning. Winemaking is also a prospering and economically important industry and a longtime symbol of status and luxury. In winemaking, the formation of the final product is influenced by several factors that contribute to the chemical and sensory complexity often associated with quality vintages. Factors such as terroir, climatic conditions, variety of the grape, all aspects of the winemaking process to the smallest details, including metabolic processes carried out by yeast and malolactic bacteria, and the conditions for the maturation and storage of the final product, up to, and even beyond the point of deciding to open the bottle and enjoy the wine. In conjunction with the empiric and scientific process of winemaking, different molecules with antibacterial activity can be identified in wine during the production process, and several of them are clearly present in the final product. Some of these antibacterial components are phytochemicals, such as flavonoids and phenolic compounds, that may be delivered to the final product (wine) as a part of the grape, a variety of potential additive compounds, or from the oak barrels or clay amphoras used during the maturation process. Others are produced by yeasts and malolactic bacteria and play a role not only in the moderation of the fermentation process but contributing to the microbiological safety and beneficial properties spectra of the final product. Lactic acid bacteria, responsible for conducting malolactic fermentation, contribute to the final balance of the wine but are also directly involved in the production of different compounds exhibiting antibacterial activity. Some examples of these compounds include bacteriocins (antibacterial peptides), diacetyl, organic acids, reuterin, hydrogen peroxide, and carbon dioxide. Major aspects of these different beneficial metabolites are the subject of discussion in this review with the aim of highlighting their beneficial functions.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.
- Food Research Center (FoRC), Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.
- CISAS- Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347, Viana do Castelo, Portugal.
| | - Virginia Farias Alves
- Faculdade de Farmácia, Universidade Federal de Goiás (UFG), 74605-170, Goiânia, GO, Brazil
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, 344000, Gagarina Sq., 1, Rostov-On-Don, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Olimpijskij av., 1, 354340, Federal Territory Sirius, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, 08901, New Brunswick, NJ, USA
| | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Nikolay Petrov
- Laboratory of Virology, New Bulgarian University, Montevideo str. 21, 1618, Sofia, Bulgaria
| | - Iskra Vitanova Ivanova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8, Bul. Dragan Tzankov, 1164, Sofia, Bulgaria
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, 344000, Gagarina Sq., 1, Rostov-On-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, 08901, New Brunswick, NJ, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| |
Collapse
|
4
|
Mahdizade Ari M, Mirkalantari S, Darban-Sarokhalil D, Darbandi A, Razavi S, Talebi M. Investigating the antimicrobial and anti-inflammatory effects of Lactobacillus and Bifidobacterium spp. on cariogenic and periodontitis pathogens. Front Microbiol 2024; 15:1383959. [PMID: 38881669 PMCID: PMC11177620 DOI: 10.3389/fmicb.2024.1383959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background The use of probiotics is emerging as an innovative approach to managing oral health issues and mediating the immune system. The current study assessed the in vitro impacts of non-orally isolated probiotics on periodontitis and tooth decay pathogens. Methods Briefly, the persistence of probiotics in exposure to oral cavity enzymes, hydrogen peroxide, and saliva samples was examined. It was also investigated the biofilm formation and aggregation ability of probiotics, the adherence of probiotics in human gingival fibroblast cell (HGFC) lines and molar teeth samples, and the potential of probiotics to co-aggregate with oral pathogens. Additionally, the current study evaluated the effects of live probiotics on virulence gene expression, biofilm production of main oral pathogens, and changes in inflammation markers. Results The probiotics remained alive when exposed to enzymes in the oral cavity, hydrogen peroxide, and saliva at baseline, 1, 3, and 5 h after incubation at 37°C (p-value <0.05). Probiotics demonstrated to produce biofilm and aggregation, as well as adherence to HGFCs and maxillary molars (p-value >0.05). They showed significant co-aggregation with oral pathogens, which were recorded as 65.57% for B. bifidum 1001 with S. mutans, 50.06% for B. bifidum 1005 with P. gingivalis, 35.6% for L. plantarum 156 with F. nucleatum, and 18.7% for B. longum 1044 with A. actinomycetemcomitans after 8 h of incubation. A balance between pro-inflammatory and anti-inflammatory cytokines, along with inhibition of biofilm formation and changes in virulence gene transcripts, were observed. However, most of these changes were not statistically significant (p-value >0.05). Conclusion This study demonstrated the direct link between adhesiveness, aggregation, and biofilm formation with probiotic antibacterial activity. In addition to the careful selection of suitable probiotic strains, the concentration and origin of probiotic isolates should be considered.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Josephs-Spaulding J, Rajput A, Hefner Y, Szubin R, Balasubramanian A, Li G, Zielinski DC, Jahn L, Sommer M, Phaneuf P, Palsson BO. Reconstructing the transcriptional regulatory network of probiotic L. reuteri is enabled by transcriptomics and machine learning. mSystems 2024; 9:e0125723. [PMID: 38349131 PMCID: PMC10949432 DOI: 10.1128/msystems.01257-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 03/20/2024] Open
Abstract
Limosilactobacillus reuteri, a probiotic microbe instrumental to human health and sustainable food production, adapts to diverse environmental shifts via dynamic gene expression. We applied the independent component analysis (ICA) to 117 RNA-seq data sets to decode its transcriptional regulatory network (TRN), identifying 35 distinct signals that modulate specific gene sets. Our findings indicate that the ICA provides a qualitative advancement and captures nuanced relationships within gene clusters that other methods may miss. This study uncovers the fundamental properties of L. reuteri's TRN and deepens our understanding of its arginine metabolism and the co-regulation of riboflavin metabolism and fatty acid conversion. It also sheds light on conditions that regulate genes within a specific biosynthetic gene cluster and allows for the speculation of the potential role of isoprenoid biosynthesis in L. reuteri's adaptive response to environmental changes. By integrating transcriptomics and machine learning, we provide a system-level understanding of L. reuteri's response mechanism to environmental fluctuations, thus setting the stage for modeling the probiotic transcriptome for applications in microbial food production. IMPORTANCE We have studied Limosilactobacillus reuteri, a beneficial probiotic microbe that plays a significant role in our health and production of sustainable foods, a type of foods that are nutritionally dense and healthier and have low-carbon emissions compared to traditional foods. Similar to how humans adapt their lifestyles to different environments, this microbe adjusts its behavior by modulating the expression of genes. We applied machine learning to analyze large-scale data sets on how these genes behave across diverse conditions. From this, we identified 35 unique patterns demonstrating how L. reuteri adjusts its genes based on 50 unique environmental conditions (such as various sugars, salts, microbial cocultures, human milk, and fruit juice). This research helps us understand better how L. reuteri functions, especially in processes like breaking down certain nutrients and adapting to stressful changes. More importantly, with our findings, we become closer to using this knowledge to improve how we produce more sustainable and healthier foods with the help of microbes.
Collapse
Affiliation(s)
- Jonathan Josephs-Spaulding
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark
| | - Akanksha Rajput
- Department of Bioengineering, University of California, San Diego, California, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, California, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, California, USA
| | | | - Gaoyuan Li
- Department of Bioengineering, University of California, San Diego, California, USA
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California, San Diego, California, USA
| | - Leonie Jahn
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark
| | - Morten Sommer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark
| | - Patrick Phaneuf
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark
| | - Bernhard O. Palsson
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Copenhagen, Denmark
- Department of Bioengineering, University of California, San Diego, California, USA
| |
Collapse
|
6
|
Ponzio A, Rebecchi A, Zivoli R, Morelli L. Reuterin, Phenyllactic Acid, and Exopolysaccharides as Main Antifungal Molecules Produced by Lactic Acid Bacteria: A Scoping Review. Foods 2024; 13:752. [PMID: 38472865 DOI: 10.3390/foods13050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The primary goal of this scoping review is to collect, analyze, and critically describe information regarding the role of the main compounds (reuterin, phenyllactic acid, and exopolysaccharides) produced by LAB that possess antifungal properties and provide some suggestions for further research. The use of lactic acid bacteria (LAB) to mitigate spoilage and extend the shelf life of foodstuffs has a long history. Recently, there has been a growing interest in the unique properties of these additions to the foodstuffs in which they are applied. In recent studies regarding biopreservation, significant attention has been given to the role of these microorganisms and their metabolites. This fascinating recent discipline aims not only to replace traditional preservation systems, but also to improve the overall quality of the final product. The biologically active by-products produced by lactic acid bacteria are synthesized under certain conditions (time, temperature, aerobiosis, acidity, water activity, etc.), which can be enacted through one of the oldest approaches to food processing: fermentation (commonly used in the dairy and bakery sectors). This study also delves into the biosynthetic pathways through which they are synthesized, with a particular emphasis on what is known about the mechanisms of action against molds in relation to the type of food.
Collapse
Affiliation(s)
- Andrea Ponzio
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Annalisa Rebecchi
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Rosanna Zivoli
- Soremartec Italia S.r.l. (Ferrero Group), P.le P. Ferrero 1, 12051 Alba, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
7
|
Sun MC, Li DD, Chen YX, Fan XJ, Gao Y, Ye H, Zhang T, Zhao C. Insights into the Mechanisms of Reuterin against Staphylococcus aureus Based on Membrane Damage and Untargeted Metabolomics. Foods 2023; 12:4208. [PMID: 38231661 DOI: 10.3390/foods12234208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Reuterin is a dynamic small-molecule complex produced through glycerol fermentation by Limosilactobacillus reuteri and has potential as a food biopreservative. Despite its broad-spectrum antimicrobial activity, the underlying mechanism of action of reuterin is still elusive. The present paper aimed to explore the antibacterial mechanism of reuterin and its effects on membrane damage and the intracellular metabolome of S. aureus. Our results showed that reuterin has a minimum inhibitory concentration of 18.25 mM against S. aureus, based on the 3-hydroxypropionaldehyde level. Key indicators such as extracellular electrical conductivity, membrane potential and permeability were significantly increased, while intracellular pH, ATP and DNA were markedly decreased, implying that reuterin causes a disruption to the structure of the cell membrane. The morphological damage to the cells was confirmed by scanning electron microscopy. Subsequent metabolomic analysis identified significant alterations in metabolites primarily involved in lipid, amino acid, carbohydrate metabolism and phosphotransferase system, which is crucial for cell membrane regulation and energy supply. Consequently, these findings indicated that the antibacterial mechanism of reuterin initially targets lipid and amino acid metabolism, leading to cell membrane damage, which subsequently results in energy metabolism disorder and, ultimately, cell death. This paper offers innovative perspectives on the antibacterial mechanism of reuterin, contributing to its potential application as a food preservative.
Collapse
Affiliation(s)
- Mao-Cheng Sun
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dian-Dian Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu-Xin Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xiu-Juan Fan
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu Gao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
8
|
Wang J, Yin Q, Bai H, Wang W, Chen Y, Zhou M, Zhang R, Ding G, Xu Z, Zhang Y. Transcriptome Analysis of Glycerin Regulating Reuterin Production of Lactobacillus reuteri. Microorganisms 2023; 11:2007. [PMID: 37630567 PMCID: PMC10459645 DOI: 10.3390/microorganisms11082007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Reuterin can be produced from glycerol dehydration catalyzed by glycerol dehydratase (GDHt) in Lactobacillus reuteri and has broad application prospects in industry, agriculture, food, and other fields as it is active against prokaryotic and eukaryotic organisms and is resistant to proteases and lipases. However, high concentrations of glycerin inhibit reuterin production, and the mechanism behind this phenomenon is not clear. To elucidate the inhibitory mechanism of glycerol on reuterin synthesis in L. reuteri and provide reference data for constructing an L. reuteri culture system for highly effective 3-hydroxypropionaldehyde synthesis, we used transcriptome-sequencing technology to compare the morphologies and transcriptomes of L. reuteri cultured in a medium with or without 600 mM of glycerol. Our results showed that after the addition of 600 mM of glycerol to the culture medium and incubation for 10 h at 37 °C, the culture medium of L. reuteri LR301 exhibited the best bacteriostatic effect, and the morphology of L. reuteri cells had significantly changed. The addition of 600 mM of glycerol to the culture medium significantly altered the transcriptome and significantly downregulated the transcription of genes involved in glycol metabolism, such as gldA, dhaT, glpK, plsX, and plsY, but significantly upregulated the transcription of genes related to D-glucose synthesis.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Life Science, Hefei Normal University, Hefei 230061, China; (J.W.); (H.B.); (W.W.); (Y.C.); (M.Z.); (R.Z.); (G.D.); (Z.X.)
| | - Qiang Yin
- Agricultural Engineering Research Institute, Anhui Academy of Agricultural Sciences, Nongke South Road 40, Hefei 230001, China;
| | - Han Bai
- Department of Life Science, Hefei Normal University, Hefei 230061, China; (J.W.); (H.B.); (W.W.); (Y.C.); (M.Z.); (R.Z.); (G.D.); (Z.X.)
| | - Wei Wang
- Department of Life Science, Hefei Normal University, Hefei 230061, China; (J.W.); (H.B.); (W.W.); (Y.C.); (M.Z.); (R.Z.); (G.D.); (Z.X.)
| | - Yajun Chen
- Department of Life Science, Hefei Normal University, Hefei 230061, China; (J.W.); (H.B.); (W.W.); (Y.C.); (M.Z.); (R.Z.); (G.D.); (Z.X.)
| | - Minghui Zhou
- Department of Life Science, Hefei Normal University, Hefei 230061, China; (J.W.); (H.B.); (W.W.); (Y.C.); (M.Z.); (R.Z.); (G.D.); (Z.X.)
| | - Ran Zhang
- Department of Life Science, Hefei Normal University, Hefei 230061, China; (J.W.); (H.B.); (W.W.); (Y.C.); (M.Z.); (R.Z.); (G.D.); (Z.X.)
| | - Guoao Ding
- Department of Life Science, Hefei Normal University, Hefei 230061, China; (J.W.); (H.B.); (W.W.); (Y.C.); (M.Z.); (R.Z.); (G.D.); (Z.X.)
| | - Zhongdong Xu
- Department of Life Science, Hefei Normal University, Hefei 230061, China; (J.W.); (H.B.); (W.W.); (Y.C.); (M.Z.); (R.Z.); (G.D.); (Z.X.)
| | - Yan Zhang
- Department of Life Science, Hefei Normal University, Hefei 230061, China; (J.W.); (H.B.); (W.W.); (Y.C.); (M.Z.); (R.Z.); (G.D.); (Z.X.)
| |
Collapse
|
9
|
Duda-Chodak A, Tarko T, Petka-Poniatowska K. Antimicrobial Compounds in Food Packaging. Int J Mol Sci 2023; 24:2457. [PMID: 36768788 PMCID: PMC9917197 DOI: 10.3390/ijms24032457] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
This review presents current knowledge on antimicrobial agents that are already used in the food packaging industry. At the beginning, innovative ways of food packaging were discussed, including how smart packaging differs from active packaging, and what functions they perform. Next, the focus was on one of the groups of bioactive components that are used in these packaging, namely antimicrobial agents. Among the antimicrobial agents, we selected those that have already been used in packaging and that promise to be used elsewhere, e.g., in the production of antimicrobial biomaterials. Main groups of antimicrobial agents (i.e., metals and metal oxides, organic acids, antimicrobial peptides and bacteriocins, antimicrobial agents of plant origin, enzymes, lactoferrin, chitosan, allyl isothiocyanate, the reuterin system and bacteriophages) that are incorporated or combined with various types of packaging materials to extend the shelf life of food are described. The further development of perspectives and setting of new research directions were also presented.
Collapse
Affiliation(s)
- Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Tomasz Tarko
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| | - Katarzyna Petka-Poniatowska
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|