1
|
Kan L, Zheng Z, Fu W, Ma Y, Wang W, Qian H, Xu L. Recent progress on engineered micro/nanomaterials mediated modulation of gut microbiota for treating inflammatory bowel disease. J Control Release 2024; 370:43-65. [PMID: 38608876 DOI: 10.1016/j.jconrel.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Inflammatory bowel disease (IBD) is a type of chronic recurrent inflammation disease that mainly includes Crohn's disease and ulcerative colitis. Currently, the treatments for IBD remain highly challenging, with clinical treatment drugs showing limited efficacy and adverse side effects. Thus, developing drug candidates with comprehensive therapeutic effects, high efficiency, and low toxicity is urgently needed. Recently, micro/nanomaterials have attracted considerable interest because of their bioavailability, multitarget and efficient effects on IBD. In addition, gut modulation plays a substantial role in restoring intestinal homeostasis. Therefore, efficient microbiota-based strategies modulating gut microenvironment have great potential in remarkably treating IBD. With the development of micro- and nanomaterials for the treatment of IBD and more in-depth studies of their therapeutic mechanisms, it has been found that these treatments also have a tendency to positively regulate the intestinal flora, resulting in an increase in the beneficial flora and a decrease in the level of pathogenic bacteria, thus regulating the composition of the intestinal flora to a normal state. In this review, we first present the interactions among the immune system, intestinal barrier, and gut microbiome. In addition, recent advances in administration routes and methods that positively arouse the regulation of intestinal flora for IBD using probiotics, prebiotics, and redox-active micro/nanomaterials have been reviewed. Finally, the key challenges and critical perspectives of gut microbiota-based micro/nanomaterial treatment are also discussed.
Collapse
Affiliation(s)
- Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Ziwen Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| |
Collapse
|
2
|
Zhao R, Zhang Q, Huang T, Tian Y, Guan G, Lin Y. Effect of the Combination of Clostridium butyricum and Mycelium of Phellinus igniarius on Intestinal Microbiota and Serum Metabolites in DSS-Induced Colitis. Nutrients 2024; 16:153. [PMID: 38201981 PMCID: PMC10780906 DOI: 10.3390/nu16010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Clostridium butyricum (CB) and Phellinus igniarius (PI) have anti-inflammatory, immune regulation, anti-tumor, and other functions. This study aimed to explore the therapeutic effect of CB and mycelium of PI (MPI) alone and in combination on colitis mice induced by dextran sodium sulfate (DSS). Mice were randomly assigned to five groups: (1) control (CTRL), (2) DSS, (3) CB, (4) MPI, and (5) CB + MPI (CON). The weight of the mice was recorded daily during the experiment, and the length of the colon was measured on the last day of the experiment. The colons were collected for hematoxylin and eosin staining, colon contents were collected for intestinal flora analysis, and serum was collected for metabolite analysis. The results showed that compared with the DSS group, CB, MPI, and CON treatments inhibited the weight loss and colon length shortening caused by DSS, significantly increased the concentrations of interleukin (IL)-4, IL-10, and superoxide dismutase, and significantly decreased the concentrations of IL-6, tumor necrosis factor-α, and myeloperoxidase. Gene sequence analysis of 16S rRNA showed that CB, MPI, and CON treatments changed the composition and structure of intestinal microorganisms. Metabolome results showed that CB, MPI, and CON treatments changed serum metabolites in DSS-treated mice, including dodecenoylcarnitine, L-urobilinogen, and citric acid. In conclusion, CB, MPI, and CON treatments alleviated DSS-induced colitis in mice by regulating intestinal flora and metabolites, with the CON group having the best effect.
Collapse
Affiliation(s)
- Rou Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Qiaoyi Zhang
- Agricultural Bioengineering Institute, Changsha 410128, China; (Q.Z.); (T.H.); (Y.T.); (G.G.)
| | - Ting Huang
- Agricultural Bioengineering Institute, Changsha 410128, China; (Q.Z.); (T.H.); (Y.T.); (G.G.)
| | - Yun Tian
- Agricultural Bioengineering Institute, Changsha 410128, China; (Q.Z.); (T.H.); (Y.T.); (G.G.)
| | - Guiping Guan
- Agricultural Bioengineering Institute, Changsha 410128, China; (Q.Z.); (T.H.); (Y.T.); (G.G.)
| | - Yuanshan Lin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| |
Collapse
|
3
|
Do HJ, Kim YS, Oh TW. Effect of Polycan, a β-Glucan from Aureobasidium pullulans SM-2001, on Inflammatory Response and Intestinal Barrier Function in DSS-Induced Ulcerative Colitis. Int J Mol Sci 2023; 24:14773. [PMID: 37834221 PMCID: PMC10572787 DOI: 10.3390/ijms241914773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Ulcerative colitis (UC), a subtype of inflammatory bowel disease, is a chronic gastrointestinal inflammatory disease with unclear etiology and pathophysiology. Herein, we determined the effects of extracellular polysaccharides purified from Aureobasidium pullulans SM-2001 (Polycan) on tight junction protein expression, inflammation, and apoptosis in a dextran sodium sulfate (DSS)-induced acute colitis model. Fifty mice were divided into normal, DSS, DSS + Polycan 250 mg/kg (Polycan 250), DSS + Polycan 500 mg/kg (Polycan 500), and DSS + 5-aminosalicylic acid 100 mg/kg (5-ASA) groups. Their body weights, colon lengths, histological changes in colon tissue, and tight junction function were observed. Results showed that Polycan 250, Polycan 500, and 5-ASA significantly inhibited body weight loss compared with DSS. Similar to 5-ASA, Polycan 500 exhibited preventive effects on colon length shortening and histological changes in colon tissues. Polycan inhibited the DSS-induced decrease in fluorescein isothiocyanate-dextran permeability and myeloperoxidase activity. Moreover, Polycan significantly recovered serum cytokine (e.g., tumor necrosis factor-α, interleukin (IL)-6, and IL-1β) or mRNA expression in colon tissue compared with DSS. Polycan also inhibited apoptosis by reducing caspase-3 activity and the Bcl-2 associated X/B-cell lymphoma 2 (Bcl-2) ratio. Additionally, DSS treatment significantly reduced microbial abundance and diversity, but the administration of Polycan reversed this effect. Collectively, Polycan protected intestinal barrier function and inhibited inflammation and apoptosis in DSS-induced colitis.
Collapse
Affiliation(s)
- Hyun Ju Do
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea;
| | - Young-Suk Kim
- Glucan Co., Ltd., 25-15, Worasan-ro 950 beon-gil, Munsan-eup, Jinju-si 52840, Gyeongsangnam-do, Republic of Korea;
| | - Tae Woo Oh
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea
- Department of Korean Convergence Medical Science, University of Science & Technology (UST), 1672 Yuseongdae-ro, Daejeon 34054, Yuseong-gu, Republic of Korea
| |
Collapse
|