1
|
Costa JEG, Matos JDS, Azevedo PZ, Souza FDCDA, Rodrigues S, Fernandes FAN, da Silva VM, Bezerra JDA, Sanches EA, Lamarão CV, Vidigal MCTR, Stringheta PC, Martins E, Campelo PH. Techno-functionality of jack bean (Canavalia ensiformis) protein concentrate: a comparative study with soy and pea proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 39815735 DOI: 10.1002/jsfa.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 12/15/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND With the growing human awareness of the environmental and animal stress caused by the meat industry, the consumption of plant-based products has expanded. Plant proteins have gained market prominence due to their sustainable origin, economic value and health benefits. Well-established plant proteins in the market, such as those of soy and pea, have various applications as ingredients in the food industry. However, given the wide variety of protein sources, it is necessary to conduct studies on the chemical and techno-functional characterization of other raw materials to further diversify their properties. In this context, the present study introduces jack bean protein concentrate (JBPC) as a potential alternative to proteins already established in the market. Techno-functional properties such as surface hydrophobicity, solubility, zeta potential, water- and oil-holding capacity, foam capacity and stability, emulsion stability and gel formation and rheology were analyzed. RESULTS The protein content obtained from the extraction of the JBPC was 73 g (100 g)-1 on a dry weight basis, with an extraction yield of approximately 10% (w/w). Least gelation concentration for JBPC was 20%. JBPC exhibited a predominantly hydrophobic nature, with good oil retention capacity and emulsion and foam stabilization properties. The structure of JBPC was more linear, stable and rigid, which primarily influenced gel stiffness. CONCLUSION Based on the study of techno-functional properties, JBPC proved to be an excellent alternative to soy protein isolate and pea protein concentrate in various applications, with potential for becoming an innovative ingredient in the food industry. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Paula Zambe Azevedo
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Sueli Rodrigues
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Vanelle Maria da Silva
- Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Florestal, Brazil
| | | | | | | | | | | | - Evandro Martins
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Brazil
| | | |
Collapse
|
2
|
Boeck T, Nyhan L, Zannini E, Arendt EK. Protein digestibility and techno-functional performance of milk-alternative prototypes based on combinations of lentil and cereal protein. Food Funct 2024; 15:12228-12243. [PMID: 39604813 DOI: 10.1039/d4fo04103h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Lentil protein isolate was combined with proteins from oat, rice, brewer's spent grain (BSGP) and wheat to achieve plant-based milk alternatives (PBMA) with improved protein quality and functionality. Due to the complementary amino acid (AA) profile of pulse protein which is high in lysine, and cereal protein which is high in sulphur amino acids, their combination at an optimised ratio resulted in a protein blend with a significantly improved indispensable amino acid score (IAAS) compared to the single ingredients. All protein combinations with lentil except for wheat resulted in a full IAAS for adults. The in vitro protein digestibility was assessed using the static INFOGEST digestion model to calculate the proxy in vitro DIAAS (PIVDIAAS) of the emulsions. Techno-functional properties such as particle size, rheological behaviour and physical stability were investigated. The PIVDIAAS of the combined protein emulsions was found to be 0.72, 0.78, 0.83, 0.98 for lentil + wheat, lentil + oat, lentil + BSGP and lentil + rice emulsions, respectively, compared to 0.48, 0.25, 0.5, 0.67 and 0.81 determined for the emulsions based on lentil, wheat, oat, BSGP and rice alone, respectively. The emulsions based on the combination of lentil and cereal protein also showed improved physical stability regarding sedimentation and creaming, and a higher whiteness index of the emulsions. It could be shown that the combination of lentil and cereal protein is a promising strategy to achieve PBMAs with improved protein quality and techno-functionality.
Collapse
Affiliation(s)
- Theresa Boeck
- University College Cork, School of Food and Nutritional Sciences, College Road, Ireland.
| | - Laura Nyhan
- University College Cork, School of Food and Nutritional Sciences, College Road, Ireland.
| | - Emanuele Zannini
- University College Cork, School of Food and Nutritional Sciences, College Road, Ireland.
- Department of Environmental Biology, Sapienza University of Rome, Italy.
| | - Elke K Arendt
- University College Cork, School of Food and Nutritional Sciences, College Road, Ireland.
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
3
|
Yu R, Huppertz T, Vasiljevic T. Impact of Reconstitution Conditions on the Solubility of Faba Bean Protein Isolate. Foods 2024; 13:3857. [PMID: 39682929 DOI: 10.3390/foods13233857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Faba bean protein isolate (FBPI) is emerging as a promising protein ingredient in the food industry. However, a lack of comprehensive scientific understanding of its functional properties, particularly solubility, limits broader application. This study investigated the reconstitution behaviour of FBPI under different conditions. For this purpose, FBPI dispersions (5% w/w protein) were prepared with varying pH (6.8 or 7.5), temperature (15, 40, or 65 °C), duration of stirring (30, 60, or 90 min), stirring intensity (1000 or 1500 rpm), and water hardness (0, 200, or 400 ppm). Low reconstitution temperature resulted in greater particle size and lower solubility, while elevated temperature minimised intermolecular attractions, improving solubility. Higher pH increased the net-negative charge and thus enhanced the repulsion between the proteins, leading to greater solubility. Water hardness was another important parameter, as greater hardness generally resulted in greater particle size and lower solubility, likely due to calcium bridging. The selection of conditions for the hydration of faba bean protein isolate is important to produce high-quality and high-stability suspensions.
Collapse
Affiliation(s)
- Rui Yu
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities, College of Sports, Health and Engineering, Victoria University, Melbourne 8001, Australia
| | - Thom Huppertz
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities, College of Sports, Health and Engineering, Victoria University, Melbourne 8001, Australia
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands
- University College Cork, T12 K8AF Cork, Ireland
| | - Todor Vasiljevic
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities, College of Sports, Health and Engineering, Victoria University, Melbourne 8001, Australia
| |
Collapse
|
4
|
Badjona A, Bradshaw R, Millman C, Howarth M, Dubey B. Response surface methodology guided approach for optimization of protein isolate from Faba bean. Part 1/2. ULTRASONICS SONOCHEMISTRY 2024; 109:107012. [PMID: 39098098 PMCID: PMC11345925 DOI: 10.1016/j.ultsonch.2024.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Ultrasound-assisted extraction (UAE) was evaluated as a green procedure to produce faba beans protein isolates from faba beans. Magnetic stirring was performed as conventional extraction. A three-level five-factor Box-Behnken Design (BBD) was applied to obtain the optimal UAE conditions to concurrently maximize extraction yield and protein content. The response surface methodology (RSM) showed a quadratic curvature for extraction yield and protein. The optimal extraction conditions were determined as: Power of 123 W, solute/solvent ratio of 0.06 (1:15 g/mL), sonication time of 41 min, and total volume of 623 mL with a desirability value of 0.82. Under these conditions, the extraction yield of 19. 75 ± 0.87 % (Protein yield of 67.84 %) and protein content of 92.87 ± 0.53 % were obtained for optimum ultrasound extraction. Control samples using magnetic stirring under similar conditions without ultrasound treatment showed an extraction yield of 16.41 ± 0.02 % (Protein yield of 54.65 %) and a protein content of 89. 88 ± 0.40 %. This shows that BBD can effectively be used to optimize the extraction of proteins from faba beans using optimal extraction conditions, resulting in a higher extraction yield and protein purity.
Collapse
Affiliation(s)
- Abraham Badjona
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK.
| | - Robert Bradshaw
- Bimolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK.
| | - Caroline Millman
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK.
| | - Martin Howarth
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Bipro Dubey
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK.
| |
Collapse
|
5
|
Gautheron O, Nyhan L, Torreiro MG, Tlais AZA, Cappello C, Gobbetti M, Hammer AK, Zannini E, Arendt EK, Sahin AW. Exploring the Impact of Solid-State Fermentation on Fava Bean Flour: A Comparative Study of Aspergillus oryzae and Rhizopus oligosporus. Foods 2024; 13:2922. [PMID: 39335851 PMCID: PMC11431236 DOI: 10.3390/foods13182922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Fava bean (Vicia faba L.) is a protein-rich pulse with high nutritional value, but its functional and sensory characteristics limit its application in foods. Solid-state fermentation (SSF) can modify the composition of plant proteins, modulate its functionality, and enhance the sensory aspects. In this study, fava bean flour (FB) was fermented with Aspergillus oryzae and Rhizopus oligosporus to produce FBA and FBR, respectively, ingredients with distinct nutritional, functional, and aroma characteristics. The protein content increased by 20% in FBA and 8% in FBR, while fat levels rose more significantly in FBR (+40%). The overall content of fermentable oligo-, di-, mono-saccharides, and polyols (FODMAPs) decreased by 47% (FBA) and 57% (FBR), although polyol production by A. oryzae was observed. SSF improved the nutritional profile of FBA and FBR, with a notable increase in the concentration of essential amino acids observed, and a reduction in most antinutrients, with the exception of trypsin inhibitors. SSF resulted in the formation of aggregates, which increased the particle size and reduced protein solubility. Emulsions prepared with the fermented ingredients separated faster, and the foaming capacity of both FBA and FBR was decreased, but an increase in water-holding capacity was observed. SSF resulted in the production of predominantly savoury-associated aroma compounds, with compounds characteristic of metallic and mouldy aromas reduced. These results indicate the potential of SSF to transform FB with enhanced nutritional value and improved sensory and functional properties.
Collapse
Affiliation(s)
- Ophélie Gautheron
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (O.G.); (L.N.); (E.Z.); (A.W.S.)
| | - Laura Nyhan
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (O.G.); (L.N.); (E.Z.); (A.W.S.)
| | | | - Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, 1, 39100 Bolzano, BZ, Italy; (A.Z.A.T.); (C.C.); (M.G.)
| | - Claudia Cappello
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, 1, 39100 Bolzano, BZ, Italy; (A.Z.A.T.); (C.C.); (M.G.)
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, 1, 39100 Bolzano, BZ, Italy; (A.Z.A.T.); (C.C.); (M.G.)
| | - Andreas Klaus Hammer
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany;
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (O.G.); (L.N.); (E.Z.); (A.W.S.)
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, 00185 Rome, RM, Italy
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (O.G.); (L.N.); (E.Z.); (A.W.S.)
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland; (O.G.); (L.N.); (E.Z.); (A.W.S.)
| |
Collapse
|
6
|
Lai M, Wang Y, Li F, Zhao J. Synthesis and Characterization of Sodium Lignosulfonate-Based Phosphorus-Containing Intermediates and Its Composite Si-P-C Silicone-Acrylic Emulsion Coating for Flame-Retardant Plywood. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12573-12593. [PMID: 38843172 DOI: 10.1021/acs.langmuir.4c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Through the substitution reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and sodium lignosulfonate (LS), a novel phosphorus-containing sodium lignosulfonate (DAL) was successfully synthesized via the solvothermal method and used as a multifunctional flame retardant to prepare a novel silicone-acrylic emulsion (SAE) composite Si-P-C coating. The structure of DAL was determined by X-ray diffraction (XRD), attenuated total reflection infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and nuclear magnetic resonance (solid-state 13C NMR and 31P NMR). The results demonstrated that incorporating an appropriate dosage of DAL (0.9 g, 1.5 wt %) into SAE-based composite coatings enhances flame retardancy and reduces heat release and smoke production during burning. The peak heat release rate (p-HRR) decreases from 236.7 to 120.3 kW·m-2, total smoke production (TSP) decreases by 71.1%, and the flame-retardant index increases from 1.00 to 4.58. Meanwhile, the coating is transformed into a dense and nonflammable vitreous polyphosphate barrier layer during the firing process to prevent heat or mass transfer. Furthermore, the pyrolysis kinetics identify that the 3D Z-L-T model governs the coatings' pyrolysis, and the appropriate DAL makes the pyrolysis Eα climb from 300.98 to 331.30 kJ·mol-1 at 358-439 °C. Hence, this study presents a new synthesis method of multifunctional flame retardant DAL, studies the excellent properties and cross-linking mechanism of DAL-doped SAE-composite Si-P-C coatings, and explores a halogen-free, low-carbon, and clean eco-technology strategy.
Collapse
Affiliation(s)
- MengYao Lai
- School of Resources Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
| | - YaChao Wang
- School of Resources Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
- Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education, Mianyang 621010, China
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Fan Li
- School of Resources Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
| | - JiangPing Zhao
- School of Resources Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
| |
Collapse
|
7
|
Ameur H, Tlais AZA, Paganoni C, Cozzi S, Suman M, Di Cagno R, Gobbetti M, Polo A. Tailor-made fermentation of sourdough reduces the acrylamide content in rye crispbread and improves its sensory and nutritional characteristics. Int J Food Microbiol 2024; 410:110513. [PMID: 38043376 DOI: 10.1016/j.ijfoodmicro.2023.110513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/13/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Thirty strains of lactic acid bacteria (LAB) and Saccharomyces cerevisiae E8.9 (wild type) were used to formulate fifteen combinations of starters by mixing two or three LAB with the yeast (ratio LAB: yeast, 10: 1). Such combinations were used to prepare rye sourdough and their performance in term of acidification and biochemical characteristics during fermentation at two temperatures (30 and 37 °C) and duration (4 and 8 h) were screened. The best thirteen sourdough formulations were selected and used for rye crispbread making. The analysis of acrylamide concentration demonstrated that 11 out 13 formulations resulted in significant decreases of concentration compared to the baker's yeast (control), with reductions up to 79.6 %. The rye sourdough crispbreads showed also higher amount of volatile organic compounds (VOCs) compared to the baker's yeast control. Two rye sourdough crispbreads, selected to represent the opposite extremes within the thirteen formulations in term of VOC profiles and fermentation performances, demonstrated better sensory and nutritional features, such as phytic acid reduction (up to 47.3 %), and enhanced total free amino acid compared to the control. These evidences suggest the potential of tailored sourdough fermentations as alternative and suitable biotechnological strategy for lowering acrylamide levels in rye crispbread.
Collapse
Affiliation(s)
- Hana Ameur
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy
| | - Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy
| | | | - Serena Cozzi
- Barilla G. e R. Fratelli S.p.A., via Mantova, 166, 43122 Parma, Italy
| | - Michele Suman
- Barilla G. e R. Fratelli S.p.A., via Mantova, 166, 43122 Parma, Italy; Department for Sustainable Food Process, Catholic University Sacred Heart, via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy
| | - Andrea Polo
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy.
| |
Collapse
|
8
|
Abdel-Aal ESM. Legumes and Cereals: Physicochemical Characterization, Technical Innovation and Nutritional Challenges. Foods 2023; 13:5. [PMID: 38201033 PMCID: PMC10778197 DOI: 10.3390/foods13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Legume dry seeds (pulses) and cereal kernels or caryopses (grains) are staple foods worldwide and the primary supply of energy, protein, and fiber in our diet [...].
Collapse
Affiliation(s)
- El-Sayed M Abdel-Aal
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| |
Collapse
|