1
|
Guo Y, Ma C, Xu Y, Du L, Yang X. Food Gels Based on Polysaccharide and Protein: Preparation, Formation Mechanisms, and Delivery of Bioactive Substances. Gels 2024; 10:735. [PMID: 39590091 PMCID: PMC11593672 DOI: 10.3390/gels10110735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Hydrogels have a unique three-dimensional network that can create a good environment for the loading of functional compounds; hence, they have considerable potential in the delivery of bioactive substances. Natural macromolecular substances (proteins, polysaccharides) have the features of low toxicity, degradability, and biosafety; thus, they can be employed in the manufacture of hydrogels in the food sector. With its customizable viscoelastic and porous structure, hydrogels are believed to be good bioactive material delivery vehicles, which can effectively load polyphenols, vitamins, probiotics, and other active substances to prevent their influence from the external environment, thereby improving its stability. In this research, the common raw materials, preparation methods, and applications in the delivery of bioactive elements of food gels were examined; this study aimed at presenting new ideas for the development and utilization of protein-based food gels.
Collapse
Affiliation(s)
- Yong Guo
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China;
| | - Chao Ma
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Xu
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China;
| | - Lianxin Du
- Graduate School, Harbin Sport University, Harbin 150008, China;
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shandong Benefit Mankind Glycobiology Co., Ltd., Weihai 264200, China
| |
Collapse
|
2
|
Wang Z, Lan T, Jiang J, Song T, Liu J, Zhang H, Lin K. On the modification of plant proteins: Traditional methods and the Hofmeister effect. Food Chem 2024; 451:139530. [PMID: 38703723 DOI: 10.1016/j.foodchem.2024.139530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/06/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
With increasing consumer health awareness and demand from some vegans, plant proteins have received a lot of attention. Plant proteins have many advantages over animal proteins. However, the application of plant proteins is limited by a number of factors and there is a need to improve their functional properties to enable a wider range of applications. This paper describes the advantages and disadvantages of traditional methods of modifying plant proteins and the appropriate timing for their use, and collates and describes a method with fewer applications in the food industry: the Hofmeister effect. It is extremely simple but efficient in some respects compared to traditional methods. The paper provides theoretical guidance for the further development of plant protein-based food products and a reference value basis for improving the functional properties of proteins to enhance their applications in the food industry, pharmaceuticals and other fields.
Collapse
Affiliation(s)
- Ziming Wang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Tiantong Lan
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Jing Jiang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Tingyu Song
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Ke Lin
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Li W, Zhou Q, Xu J, Zhu S, Lv S, Yu Z, Yang Y, Liu Y, Zhou Y, Sui X, Zhang Q, Xiao Y. Insight into the solubilization mechanism of wheat gluten by protease modification from conformational change and molecular interaction perspective. Food Chem 2024; 447:138992. [PMID: 38503066 DOI: 10.1016/j.foodchem.2024.138992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/29/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
The low solubility limits the utilization of other functional characteristics of wheat gluten (WG). This study effectively improved the solubility of WG through protease modification and explored the potential mechanism of protease modification to enhance the solubility of WG, further stimulating the potential application of WG in the food industry. Solubility of WG modified with alkaline protease, complex protease, and neutral protease was enhanced by 98.99%, 54.59%, and 51.68%, respectively. Notably, the content of β-sheet was reduced while the combined effect of hydrogen bond and ionic bond were increased after protease modification. Meanwhile, the reduced molecular size and viscoelasticity as well as the elevated surface hydrophobicity, thermostability, water absorption capacity, and crystallinity were observed in modified WG. Moreover, molecular docking indicated that protease was specifically bound to the amino acid residues of WG through hydrogen bonding, hydrophobic interaction, and salt bridge.
Collapse
Affiliation(s)
- Weixiao Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qianxin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jianxia Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shanlong Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Sixu Lv
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yin Yang
- Anhui Bi Lv Chun Biotechnology Co., Ltd., Chuzhou 239200, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Qiang Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Liang P, Chen S, Fang X, Wu J. Recent advance in modification strategies and applications of soy protein gel properties. Compr Rev Food Sci Food Saf 2024; 23:e13276. [PMID: 38284605 DOI: 10.1111/1541-4337.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 01/30/2024]
Abstract
Soy protein gel can be developed into a variety of products, ranging from traditional food (e.g., tofu) to newly developed food (e.g., soy yogurt and meat analog). So far, efforts are still needed to be made on modifying the gel properties of soy protein for improving its sensory properties as animal protein-based food substitutes. Furthermore, there is always a need to regulate its gel properties for designing novel and tailored products of soy protein gels due to the fast-growing plant protein-based product market. This review gave an emphasis on the latest modification strategies and applications of gel properties of soy protein. The modifying methods of soy protein gel properties were reviewed from an aspect of composition or processing. Compositional modification included changing protein composition and gelling conditions and using additives, whereas processing strategies can be achieved through physical, chemical, and enzymatic treatments. Several compositional modification and processing strategies have been both proven to alter the gel properties of soy protein effectively. So far, soy protein gel has been applied in the field of food and biomedicine. In the future, more mechanistic studies on the modification methods are still needed to facilitate the full application of soy protein gel.
Collapse
Affiliation(s)
- Peijun Liang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Simin Chen
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianfeng Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Hashemi B, Assadpour E, Zhang F, Jafari SM. A comparative study of the impacts of preparation techniques on the rheological and textural characteristics of emulsion gels (emulgels). Adv Colloid Interface Sci 2023; 322:103051. [PMID: 37981462 DOI: 10.1016/j.cis.2023.103051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
A subtype of soft solid-like substances are emulsion gels (emulgels; EGs). These composite material's structures either consist of a network of aggregated emulsion droplets or a polymeric gel matrix that contains emulsion droplets. The product's rheological signature can be used to determine how effective it is for a specific application. The interactions between these structured system's separate components and production process, however, have a substantial impact on their rheological imprint. Therefore, rational comprehension of interdependent elements, their structural configurations, and the resulting characteristics of a system are essential for accelerating our progress techniques as well as for fine-tuning the technological and functional characteristics of the finished product. This article presents a comprehensive overview of the mechanisms and procedures of producing EGs (i.e., cold-set and heat-set) in order to determine the ensuing rheological features for various commercial applications, such as food systems. It also describes the influence of these methods on the rheological and textural characteristics of the EGs. Diverse preparation methods are the cause of the rheological-property correlations between different EGs. In many ways, EGs can be produced using various matrix polymers, processing techniques, and purposes. This may lead to various EG matrix structures and interactions between them, which in turn may affect the composition of EGs and ultimately their textural and rheological characteristics.
Collapse
Affiliation(s)
- Behnaz Hashemi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
6
|
Su K, Sun W, Li Z, Huang T, Lou Q, Zhan S. Complex Modification Orders Alleviate the Gelling Weakening Behavior of High Microbial Transglutaminase (MTGase)-Catalyzed Fish Gelatin: Gelling and Structural Analysis. Foods 2023; 12:3027. [PMID: 37628026 PMCID: PMC10453174 DOI: 10.3390/foods12163027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
In this paper, the effects of different modification orders of microbial transglutaminase (MTGase) and contents of pectin (0.1-0.5%, w/v) on the gelling and structural properties of fish gelatin (FG) and the modification mechanism were studied. The results showed that the addition of pectin could overcome the phenomenon of high-MTGase-induced lower gelling strength of gelatin gels. At a low pectin content, the modification sequences had non-significant influence on the gelling properties of modified FG, but at a higher pectin content (0.5%, w/v), P0.5%-FG-TG had higher gel strength (751.99 ± 10.9 g) and hardness (14.91 ± 0.33 N) values than those of TG-FG-P0.5% (687.67 ± 20.98 g, 12.18 ± 0.45 N). Rheology analysis showed that the addition of pectin normally improved the gelation points and melting points of FG. The structural results showed that the fluorescence intensity of FG was decreased with the increase in pectin concentration. Fourier transform infrared spectroscopy analysis indicated that the MTGase and pectin complex modifications could influence the secondary structure of FG, but the influenced mechanisms were different. FG was firstly modified by MTGase, and then pectin (P-FG-TG) had the higher gelling and stability properties.
Collapse
Affiliation(s)
- Kaiyuan Su
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (K.S.); (W.S.); (Z.L.); (Q.L.)
| | - Wanyi Sun
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (K.S.); (W.S.); (Z.L.); (Q.L.)
| | - Zhang Li
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (K.S.); (W.S.); (Z.L.); (Q.L.)
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (K.S.); (W.S.); (Z.L.); (Q.L.)
| | - Qiaoming Lou
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China; (K.S.); (W.S.); (Z.L.); (Q.L.)
| | - Shengnan Zhan
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Li W, Chen Q, Wang X, Chen Z. Effect of Freezing on Soybean Protein Solution. Foods 2023; 12:2650. [PMID: 37509741 PMCID: PMC10379167 DOI: 10.3390/foods12142650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
To investigate the impact of frozen storage conditions on the physicochemical properties of soybean protein and explore the underlying mechanisms, this study focused on soybean isolate (SPI), ß-soybean companion globulin (7S), and soybean globulin (11S). The protein solutions were prepared at a concentration of 2% and subjected to freezing for 1 and 5 days. Subsequently, the protein content, physicochemical properties, secondary structure, sulfhydryl content, and chemical interaction forces were assessed and analyzed using UV spectrophotometry, Zeta potential measurements, SDS-PAGE, Fourier infrared spectroscopy, and endogenous fluorescence photoemission spectroscopy. The obtained results revealed that the solubility and total sulfhydryl content of SPI, 7S, and 11S exhibited a decreasing trend with prolonged freezing time. Among them, 11S demonstrated the largest decrease in solubility and total sulfhydryl content, followed by SPI, and 7S the least. During freezing, the aromatic amino acids of SPI, 7S, and 11S molecules were exposed, leading to increased hydrophobicity, protein aggregation, and particle size enlargement, and the structure of the protein changed from disordered structure to ordered structure. After freezing, the polarity of the microenvironment of SPI, 7S, and 11S increased, and their maximum fluorescence emission wavelengths were red-shifted. Notably, the largest red shift of SPI was from 332 nm to 335 nm. As freezing time increased, the contribution of hydrogen bonding increased, while the contribution of hydrophobic interactions decreased. This indicates that freezing affects the hydrophobic interactions, hydrogen bonding, and other chemical forces of the protein. The growth of ice crystals leads to the unfolding of protein molecular chains, exposure of internal hydrophobic groups, enhancement of hydrophobicity, and alters the secondary structure of the protein.
Collapse
Affiliation(s)
- Wenhui Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Qiongling Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|