1
|
Li Y, Yang C, Cao S, Guan R, Zhang B, Yao X, Wang Q, Dong W, Huang Y. Optimization of drying parameters and texture properties of winter jujube slices by radio frequency combined with hot air. Front Nutr 2025; 11:1523078. [PMID: 39839277 PMCID: PMC11747427 DOI: 10.3389/fnut.2024.1523078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
In order to improve the drying quality of winter jujube slices and find the best drying process parameters, RF + HA (radio frequency combined hot air) drying technology was used in this study to study the effects of plate spacing, RF application time, and RF interval time on the quality of winter jujube slices. Vitamin C (VC) content, red and green value (a*), and drying rate (DR) were used as quality indexes, and the changing trend of texture properties was analyzed. According to the conclusion of the single-factor experiment, the orthogonal experiment is carried out, and the parameters of each factor in the orthogonal experiment are optimized by the comprehensive balance method and matrix analysis method. The results showed as follows: (1) Plate spacing, RF application, and interval time all significantly affected the drying properties in the single-factor test (p < 0.05). The VC content of winter jujube slices increased and then decreased with the increase in the three factors. (2) In the orthogonal test, the order of influence of each factor on the quality of the winter jujube tablet is plate spacing > RF interval time > RF application time. The optimum RF heat treatment parameters are plate spacing of 100 mm, RF application time of 3 min, and RF interval time of 2 min. Under these conditions, the VC content of the winter jujube slices was 258.35 mg/100 g, a* was -9.47 and the DR was 0.64 g/min. (3) RF + HA has more advantages in shortening drying time and maintaining shape, reducing hardness by 12.6 ~ 18.7% and crispiness by 13.8 ~ 20.4%, the microstructure of jujube slices shows a regular honeycomb shape. The research results provide a new drying combination mechanism and process optimization scheme for improving the drying technology of winter jujube slices in industrial production.
Collapse
Affiliation(s)
- Yang Li
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Chenyan Yang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Shuaitao Cao
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Ruijie Guan
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Bowen Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Xuedong Yao
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Qiang Wang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Wancheng Dong
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| | - Yong Huang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi, China
| |
Collapse
|
2
|
Zhang Y, Suo K, Feng Y, Yang Z, Zhu Y, Wang J, Zhou C, Shi L, Chen W. Catalytic infrared radiation dry-peeling Technology for non-Frozen and Frozen Grapes: Effects on temperature, peeling performance, and quality attributes. Food Chem 2024; 455:139854. [PMID: 38823121 DOI: 10.1016/j.foodchem.2024.139854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/04/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
This study introduces catalytic infrared radiation (CIR) heating technology as an eco-friendly alternative to conventional grape lye peeling (LP). The effects of heating time and distance on non-frozen and frozen grapes were assessed for temperature, peeling performance, and quality attributes. The findings indicate that CIR heating achieves complete dry-peeling of grapes. Extended heating times and reduced distances improve peeling performance, with more favorable results observed in frozen grapes compared to non-frozen ones. Grapes peeled using CIR demonstrated enhanced hardness, color, sugar-acid ratio, bioactive compounds, and antioxidant capacity, compared to those peeled using LP. Importantly, the frozen samples preserved their quality after CIR dry-peeling treatment. Based on peeling performance and quality attributes, the optimum heating times are established at 160 s for non-frozen grapes and 50 s for frozen grapes, at a heating distance of 5 cm. Therefore, CIR dry-peeling is recommended as an eco-friendly and quality-enhancing sustainable grape processing technology.
Collapse
Affiliation(s)
- Yang Zhang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Kui Suo
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yabin Feng
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; Haitong Food (Ninghai) Co., Ltd, Ningbo 315602, China.
| | - Zhenfeng Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| | - Yulin Zhu
- College of Life Science, Yantai University, Yantai 264005, China
| | | | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Liyu Shi
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
3
|
Li H, Wang Z, Zhao G, Wang Y, Xu X, Wang Y, Zhang Z, Wang G. Comparative Biochemical and Pharmacodynamic Analyses of Asarum heterotropoides Fr. Schmidt var. Mandshuricum (Maxim) Kitag and Asarum sieboldii Miq var. Seoulense Nakai Roots. Pharmaceuticals (Basel) 2024; 17:1301. [PMID: 39458942 PMCID: PMC11509884 DOI: 10.3390/ph17101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background:Asarum heterotropoides and Asarum sieboldii are commonly used in traditional Chinese medicine. However, little is known about how they differ in terms of essential oil (EO) and ethanol extract (EE) content and composition. Moreover, the effect of various geographical locations on the essential oil (EO), ethanol extract (EE), and asarinin content of different Asarum samples remains unknown. We tested four root-drying methods, i.e., soil removal and shade drying (P1), water washing and shade drying (P2), and water washing and drying at 30 °C (P3) and 40 °C (P4). We used LC-MS and GC-MS to investigate these differences. We also investigated the pharmacodynamic effects of EO and EE. Results: Overall, the EO, EE and asarinin contents of the analysed samples were 19.21-51.53 μL.g-1, 20.00-45.00 μL.g-1, and 1.268-2.591 mg.g-1, respectively. P1 treatment yielded the lowest volatile oil content compared to the other three treatments. GC-MS analysis revealed 78 EO components. Among the six major EO components, eucarvone, 3,5-dimethoxytoluene, and methyl eugenol were higher in A. heterotropoides than in A. sieboldii. However, the latter had a higher myristicin content. LC-MS analysis identified 888 EE components in roots and leaves of A. heterotropoides and A. sieboldii; 317 differentially accumulated metabolites were identified. EO and EE showed a dose-dependent reduction in the degree of swelling and an increase in the inhibition rate of drug concentration on acetic acid writhing in mice. Asarum EO proved to be more effective than EE in the pharmacodynamic study. Conclusions: We conclude that Asarum species show inter- and intra-specific differences in EO and EE content and composition, which may influence the pharmacodynamics of Asarum root extracts.
Collapse
Affiliation(s)
- Huiling Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (G.W.)
| | - Zhiqing Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (G.W.)
| | - Guangyuan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (G.W.)
| | - Yanhong Wang
- Ginseng and Antler Product Quality and Safety Risk Assessment Laboratory, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (X.X.)
| | - Xuanwei Xu
- Ginseng and Antler Product Quality and Safety Risk Assessment Laboratory, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (X.X.)
| | - Yingping Wang
- State & Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ze Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (G.W.)
| | - Guanghui Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (H.L.); (G.W.)
| |
Collapse
|
4
|
Sun X, Song Z, Tang Z, Yu J, Fan X, Yang Y, Yuan S, Chen Q. Effects of different post-harvest processing methods on changes in the active ingredients of licorice based on LC-MS and plant metabolomics. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 38989561 DOI: 10.1002/pca.3419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Licorice, the dried roots and rhizomes of the Glycyrrhiza uralensis Fisch., holds a prominent status in various formulations within the realm of Chinese medicinal practices. The traditional processing methods of licorice hinder quality assurance, thus prompting Chinese medicine researchers to focus on the fresh processing methods to enhancing processing efficiency and quality. OBJECTIVE This study aimed to identify the differential compounds of licorice between traditional and fresh processing methods and provide a scientific basis for the fresh processing of licorice and for further research on the processing mechanism. METHODOLOGY A methodology integrating ultra-performance liquid chromatography with quadrupole-time-of-flight tandem mass spectrometry combined with multivariate statistical analysis was employed to characterize the differential compounds present in licorice between traditional processing and fresh processing. RESULTS The results derived from principal component analysis and heat map analyses underscored significant differences in the content of bioactive compounds between the two processing methods. By applying conditions of VIP > 1.5 and p < 0.05, a total of 38 differential compounds were identified through t tests, and the transformation mechanisms of select compounds were illustrated. CONCLUSION The adoption of fresh processing techniques not only improved processing efficiency but also significantly enhanced the preservation of bioactive compounds within licorice. This research has established a rapid and efficient analytical method for the identification of differential compounds present in differently processed licorice products.
Collapse
Affiliation(s)
- Xiaoxu Sun
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhongxing Song
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhishu Tang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingao Yu
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiuhe Fan
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuangui Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Shuhui Yuan
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qiang Chen
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
5
|
Pérez-Mejía N, Villarreal ML, Sánchez-Carranza JN, González-Maya L, González-Cortazar M, Ortíz-Caltempa A, Alvarez L. Phytochemical Profiles and Cytotoxic Activity of Bursera fagaroides (Kunth) Engl. Leaves and Its Callus Culture. PLANTS (BASEL, SWITZERLAND) 2024; 13:1622. [PMID: 38931054 PMCID: PMC11207444 DOI: 10.3390/plants13121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Bursera fagaroides, popularly used in México, possesses bioactive lignans. These compounds are low in the bark, and its extraction endangers the life of the trees. The aim of the present investigation was to search for alternative sources of cytotoxic compounds in B. fagaroides prepared as leaves and in vitro callus cultures. The friable callus of B. fagaroides was established using a combination of plant growth regulators: 4 mgL-1 of 2,4-dichlorophenoxyacetic acid (2,4-D), 1 mgL-1 Naphthaleneacetic Acid (NAA) and 1 mgL-1 Zeatin. The maximum cell growth was at day 28 with a specific growth rate of μ = 0.059 days-1 and duplication time td = 11.8 days. HPLC quantification of the dichloromethane callus biomass extract showed that Scopoletin, with a concentration of 10.7 µg g-1 dry weight, was the main compound inducible as a phytoalexin by the addition of high concentrations of 2,4-D, as well as by the absence of nutrients in the culture medium. In this same extract, the compounds γ-sitosterol and stigmasterol were also identified by GC-MS analysis. Open column chromatography was used to separate and identify yatein, acetyl podophyllotoxin and 7',8'-dehydropodophyllotoxin in the leaves of the wild plant. Cytotoxic activity on four cancer cell lines was tested, with PC-3 prostate carcinoma (IC50 of 12.6 ± 4.6 µgmL-1) being the most sensitive to the wild-type plant extract and HeLa cervical carcinoma (IC50 of 72 ± 5 µgmL-1) being the most sensitive to the callus culture extract.
Collapse
Affiliation(s)
- Nancy Pérez-Mejía
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico; (N.P.-M.); (M.L.V.)
| | - María Luisa Villarreal
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico; (N.P.-M.); (M.L.V.)
| | - Jessica Nayelli Sánchez-Carranza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico; (J.N.S.-C.); (L.G.-M.)
| | - Leticia González-Maya
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico; (J.N.S.-C.); (L.G.-M.)
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, IMSS, Calle República Argentina No. 1, Col. Centro, Xochitepec C. P. 62790, Mexico;
| | - Anabel Ortíz-Caltempa
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico; (N.P.-M.); (M.L.V.)
| | - Laura Alvarez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca C. P. 62209, Mexico
| |
Collapse
|
6
|
Zhu L, Xie Y, Li M, Zhang X, Ji X, Zhang X, Zhu H, Gu J, Zhang Q, Yang X. Design and optimization of heat pump with infrared drying for Glycyrrhiza uralensis (Licorice) processing. Front Nutr 2024; 11:1382296. [PMID: 38835959 PMCID: PMC11148371 DOI: 10.3389/fnut.2024.1382296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
A new dryer, integrating infrared and heat pump drying technologies, was designed to enhance licorice processing standardization, aiming at improved drying efficiency and product quality. Numerical simulation using COMSOL software validated the air distribution model through prototype data comparison. To address uneven air distribution, a spoiler was strategically placed based on CFD simulation to optimize its size and position using the velocity deviation ratio and non-uniformity coefficient as indices. Post-optimization, the average velocity deviation ratio decreased from 0.5124 to 0.2565%, and the non-uniformity coefficient dropped from 0.5913 to 0.3152, achieving a more uniform flow field in the drying chamber. Testing the optimized dryer on licorice demonstrated significant improvements in flow field uniformity, reducing licorice drying time by 23.8%. Additionally, optimized drying enhanced licorice color (higher L* value) and increased retention rates of total phenol, total flavone, and vitamin C. This research holds substantial importance for advancing licorice primary processing, fostering efficiency, and improving product quality.
Collapse
Affiliation(s)
- Lichun Zhu
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
| | - Yongkang Xie
- Agricultural Products Processing Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Mengqing Li
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
| | - Xuetao Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
| | - Xinyu Ji
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
| | - Xiaoqiang Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
| | - Hongbo Zhu
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
| | - Junzhe Gu
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
| | - Qian Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Engineering Research Center for Production Mechanization of Oasis Special Economic Crop Ministry of Education, Shihezi, China
- Key Laboratory of Modern Agricultural Machinery, Xinjiang Production and Construction Corps, Shihezi, China
| | - Xuhai Yang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
- Engineering Research Center for Production Mechanization of Oasis Special Economic Crop Ministry of Education, Shihezi, China
| |
Collapse
|
7
|
Lv G, Li Z, Zhao Z, Liu H, Li L, Li M. The factors affecting the development of medicinal plants from a value chain perspective. PLANTA 2024; 259:108. [PMID: 38555562 DOI: 10.1007/s00425-024-04380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
MAIN CONCLUSION From a value chain perspective, this paper examines the important factors from the selection of planting areas to storage, which restrict the development of medicinal plants. The purpose of this paper is to provide theoretical basis for the sustainable development of medicinal plants. Medicinal plants have significant economic and medicinal value. Due to the gradual depletion of wild medicinal plant resources, cultivators of medicinal plants must resort to artificial cultivation to cope. However, there are still many problems in the production process of medicinal plants, resulting in decreases in both yield and quality, thus hindering sustainable development. To date, research on the value chain of medicinal plants is still limited. Therefore, this paper analyzes the factors affecting the development of medicinal plants from the perspective of the value chain, including the selection of growing areas to the storage process of medicinal plants, and summarizes the challenges faced in the production process of medicinal plants. The purpose of this paper is to provide theoretical basis for the sustainable development of medicinal plants.
Collapse
Affiliation(s)
- Guoshuai Lv
- University Engineering Research Center of Chinese (Mongolia), Ecological Planting Medicinal Materials (Nurture) in Inner Mongolia Autonomous Region, College of Agronomy, Inner Mongolia Minzu University, Tongliao, China
| | - Zhihe Li
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zeyuan Zhao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Haolin Liu
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ling Li
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Minhui Li
- University Engineering Research Center of Chinese (Mongolia), Ecological Planting Medicinal Materials (Nurture) in Inner Mongolia Autonomous Region, College of Agronomy, Inner Mongolia Minzu University, Tongliao, China.
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, Inner Mongolia, China.
| |
Collapse
|
8
|
Qian C, Li H, Hou Z, Liang Z. Effects of different drying methods on Rubus chingii Hu fruit during processing. Heliyon 2024; 10:e24512. [PMID: 38312685 PMCID: PMC10835160 DOI: 10.1016/j.heliyon.2024.e24512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
In this study, the dried fruits of Rubus chingii Hu (Chinese name: Fu-Pen-Zi; FPZ) were processed and dried by three methods-in the shade, the sun, and the oven. The composition regarding the standard ingredient, color, and antioxidant capacities were investigated pro- and post-processing. The technique of headspace-solid-phase-microextraction-gas-chromatography-mass spectrometry (HS-SPME-GC-MS) and flavoromics were used to analyze the flavor-conferring metabolites of FPZ. The results obtained revealed that the highest use value and antioxidant capacities were detected in the FPZ fruits processed and dried in the shade. A total of 358 metabolites were detected from them mainly consisting of terpenoids, heterocyclic compounds, and esters. In differential analysis, the down-regulation of the metabolites was much greater than their up-regulation after all three drying methods. In an evaluation of the characteristic compounds and flavors produced after the three methods, there were variations mainly regarding the green and fruity odors. Therefore, considerable insights may be obtained for the development of novel agricultural methods and applications in the pharmaceutical and cosmetic industries by analyzing and comparing the variations in the chemical composition detected pre- and post-processing of the FPZ fruits. This paper provides a scientific basis for quality control in fruits and their clinical applications.
Collapse
Affiliation(s)
- Can Qian
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hongfa Li
- Hanguang Primary Processing Co., Ltd, Hangzhou, 311700, China
| | - Zhuoni Hou
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
9
|
Sun X, Tang Z, Song Z, Duan J, Wang C. Effects of different drying methods on the contents of active ingredients of Saposhnikovia divaricata (Turcz.) Schischk and optimization of the drying process by response surface methodology. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:17-27. [PMID: 37501406 DOI: 10.1002/pca.3269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Saposhnikovia divaricata (Turcz.) Schischk is one of the most widely used Chinese herbs worldwide. It has anti-inflammatory and analgesic properties and hence has a high clinical value. As the moisture level in S. divaricata is high after harvest, it requires drying. OBJECTIVE We aimed to find a scientific drying method and optimize the drying conditions of the best drying method of S. divaricata using response surface methodology (RSM). METHODOLOGY The effects of 4 different drying methods on the contents of prim-O-glucosylcimifugin, cimifugin, 5-O-methylvisamminol, and sec-O-glucosylhamaudol were determined using high-performance liquid chromatography. Chroma, the rehydration ratio, and active component content were used as indices, and slice thickness, drying temperature, and drying time were used as independent variables to optimize the drying conditions of the optimal drying method of S. divaricata using RSM combined with the Box-Behnken design. RESULTS The results showed that the optimal drying conditions were as follows: slice thickness, 4.00 mm; drying temperature, 60°C; and drying time, 15 h. CONCLUSION Under optimal drying conditions, the measured values were extremely close to the predicted values. The results of variance analysis showed that the model had a high degree of fit and the drying conditions of S. divaricata were optimized successfully.
Collapse
Affiliation(s)
- Xiaoxu Sun
- Shaanxi University of Chinese Medicine/Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/Shaanxi Innovative Drug Research Center, Xianyang, China
| | - Zhishu Tang
- Shaanxi University of Chinese Medicine/Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/Shaanxi Innovative Drug Research Center, Xianyang, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongxing Song
- Shaanxi University of Chinese Medicine/Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry/Shaanxi Innovative Drug Research Center, Xianyang, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Changli Wang
- Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
10
|
Ao J, Shen H, Cai Y, Wang J, Xie Y, Luo A. Optimization of the pulsed vacuum drying process of green walnut husk through temperature adaptive regulation. J Food Sci 2024; 89:121-134. [PMID: 38010731 DOI: 10.1111/1750-3841.16853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/22/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
This study aimed to optimize the temperature adaptive conditions of pulsed vacuum drying (PVD) for green walnut husk (GWH) to tackle the issues of severe environmental pollution and limited utilization of GWH. The results of the single-factor experiment revealed that the optimal drying temperature for PVD of GWH was 65°C, with a pulsed ratio of 9 min: 3 min. The drying time decreased from 10.87 to 6.32 h with increasing drying temperature and from 8.83 to 6.23 kW·h/kg with increasing pulsed ratio. Energy consumption also decreased with shorter drying time and shorter vacuum time. Under this optimal variable temperature drying condition, GWH exhibited the highest total active substance content, with respective values of 9.43 mg/g for total triterpenes, 35.68 mg/g for flavonoids, 9.51 mg/g for polyphenols, and 9.55 mg/g for quinones. The experimental drying data of GWH were best fitted by a logarithmic model, with R2 values ranging from 0.9927 to 0.9943. Furthermore, the observed microstructure of GWH corresponded to the variations in total active substance content. This study provided valuable theoretical guidance for addressing environmental pollution associated with GWH and facilitating the industrialization and refinement of GWH drying processes. PRACTICAL APPLICATION: There is a growing interest in harnessing the potential value of agricultural waste to transform low-cost raw materials into high-value products while mitigating environmental pollution. In this study, for the first time, the effects of variable temperature pulsed vacuum drying on the content of active substances, drying time, and energy consumption of green walnut husk (GWH) were investigated. The findings serve as a theoretical foundation for addressing environmental pollution issues associated with GWH and enabling the industrialization and precision drying of GWH.
Collapse
Affiliation(s)
- Jingfang Ao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Heyu Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yongkang Xie
- Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Anwei Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Geng Z, Li M, Zhu L, Zhang X, Zhu H, Yang X, Yu X, Zhang Q, Hu B. Design and Experiment of Combined Infrared and Hot-Air Dryer Based on Temperature and Humidity Control with Sea Buckthorn ( Hippophae rhamnoides L.). Foods 2023; 12:2299. [PMID: 37372510 DOI: 10.3390/foods12122299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A drying device based on infrared radiation heating technology combined with temperature and humidity process control technology was created to increase the drying effectiveness and quality of sea buckthorn. Based on the conventional k-turbulence model, the velocity field in the air distribution chamber was simulated using COMSOL 6.0 software. The airflow of the drying medium in the air distribution chamber was investigated, and the accuracy of the model was verified. Given that the inlet of each drying layer in the original model had a different velocity, the velocity flow field was improved by including a semi-cylindrical spoiler. The results showed that installation of the spoiler improved the homogeneity of the flow field for various air intakes, as the highest velocity deviation ratio dropped from 26.68% to 0.88%. We found that sea buckthorn dried more rapidly after being humidified, reducing the drying time by 7.18% and increasing the effective diffusion coefficient from 1.12 × 10-8 to 1.23 × 10-8 m2/s. The L*, rehydration ratio, and vitamin C retention rate were greater after drying with humidification. By presenting this hot-air drying model as a potential high-efficiency and high-quality preservation technology for sea buckthorn, we hope to advance the development of research in the sea buckthorn drying sector.
Collapse
Affiliation(s)
- Zhihua Geng
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Mengqing Li
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Lichun Zhu
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Xiaoqiang Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Hongbo Zhu
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Xuhai Yang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Xianlong Yu
- Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Shihezi 832003, China
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Qian Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Shihezi 832003, China
- Engineering Research Center for Production Mechanization of Oasis Special Economic Crop, Ministry of Education, Shihezi 832003, China
| | - Bin Hu
- Engineering Research Center for Production Mechanization of Oasis Special Economic Crop, Ministry of Education, Shihezi 832003, China
| |
Collapse
|