1
|
Zhou B, Zhao X, Laghi L, Jiang X, Tang J, Du X, Zhu C, Picone G. Insights into the Flavor Profile of Yak Jerky from Different Muscles Based on Electronic Nose, Electronic Tongue, Gas Chromatography-Mass Spectrometry and Gas Chromatography-Ion Mobility Spectrometry. Foods 2024; 13:2911. [PMID: 39335840 PMCID: PMC11431100 DOI: 10.3390/foods13182911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
It is well known that different muscles of yak exhibit distinctive characteristics, such as muscle fibers and metabolomic profiles. We hypothesized that different muscles could alter the flavor profile of yak jerky. Therefore, the objective of this study was to investigate the differences in flavor profiles of yak jerky produced by longissimus thoracis (LT), triceps brachii (TB) and biceps femoris (BF) through electronic nose (E-nose), electronic tongue (E-tongue), gas chromatography-mass spectrometry (GC-MS) and gas chromatography-ion mobility spectrometry (GC-IMS). The results indicated that different muscles played an important role on the flavor profile of yak jerky. And E-nose and E-tongue could effectively discriminate between yak jerky produced by LT, TB and BF from aroma and taste points of view, respectively. In particular, the LT group exhibited significantly higher response values for ANS (sweetness) and NMS (umami) compared to the BF and TB groups. A total of 65 and 47 volatile compounds were characterized in yak jerky by GC-MS and GC-IMS, respectively. A principal component analysis (PCA) model and robust principal component analysis (rPCA) model could effectively discriminate between the aroma profiles of the LT, TB and BF groups. Ten molecules could be considered potential markers for yak jerky produced by different muscles, filtered based on the criteria of relative odor activity values (ROAV) > 1, p < 0.05, and VIP > 1, namely 1-octen-3-ol, eucalyptol, isovaleraldehyde, 3-carene, D-limonene, γ-terpinene, hexanal-D, hexanal-M, 3-hydroxy-2-butanone-M and ethyl formate. Sensory evaluation demonstrated that the yak jerky produced by LT exhibited superior quality in comparison to that produced by BF and TB, mainly pertaining to lower levels of tenderness and higher color, taste and aroma levels. This study could help to understand the specific contribution of different muscles to the aroma profile of yak jerky and provide a scientific basis for improving the quality of yak jerky.
Collapse
Affiliation(s)
- Bingde Zhou
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (B.Z.); (X.Z.); (J.T.)
| | - Xin Zhao
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (B.Z.); (X.Z.); (J.T.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (L.L.); (G.P.)
| | - Xiaole Jiang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (B.Z.); (X.Z.); (J.T.)
| | - Xin Du
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China;
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (B.Z.); (X.Z.); (J.T.)
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (L.L.); (G.P.)
| |
Collapse
|
2
|
Cai X, Zhu K, Li W, Peng Y, Yi Y, Qiao M, Fu Y. Characterization of flavor and taste profile of different radish ( Raphanus Sativus L.) varieties by headspace-gas chromatography-ion mobility spectrometry (GC/IMS) and E-nose/tongue. Food Chem X 2024; 22:101419. [PMID: 38756475 PMCID: PMC11096940 DOI: 10.1016/j.fochx.2024.101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
A comprehensive study of the overall flavor and taste profile of different radishes is lacking. This study systematically compared the volatile profile of six radish varieties using HS-GC-IMS and their correlation with the E-nose analysis. Organic acids and amino acids were quantified, and their association with the E-tongues analysis was explored. A total of 73 volatile compounds were identified, with diallyl sulfide and dimethyl disulfide being the primary sulfides responsible for the unpleasant flavor in radish. Compared to other varieties, cherry radishes boast a significantly higher concentration of allyl isothiocyanate, which likely contributes to their characteristic radish flavor. Moreover, oxalic acid was identified as the most abundant organic acid in radish, accounting for over 97% of its content, followed by malic acid and succinic acid. In conclusion, the distinct flavor and taste characteristics of different radish varieties partially explain their suitability for diverse culinary preferences.
Collapse
Affiliation(s)
- Xuemei Cai
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Kaixian Zhu
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Wanli Li
- Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644007, China
| | - Yiqin Peng
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Yuwen Yi
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Mingfeng Qiao
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Yu Fu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
3
|
Qiao M, Xiong H, Cai X, Jiang Y, Zhao X, Miao B. Evaluation of Loquat Jam Quality at Different Cooking Times Based on Physicochemical Parameters, GC-IMS and Intelligent Senses. Foods 2024; 13:340. [PMID: 38275707 PMCID: PMC10815106 DOI: 10.3390/foods13020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The study compared and analyzed the quality of loquat jam with different cooking times through physicochemical parameters, headspace-gas chromatography-ion migration spectroscopy (HS-GC-IMS) and intelligent senses. The results showed that with the prolongation of the cooking time, the color of loquat jam slowly deepened, the energy significantly increased, the adhesiveness, gumminess, hardness and chewiness enhanced, the free amino acid content increased from 22.40 to 65.18 mg/g. The organic acid content increased from 1.64 to 9.82 mg/g. Forty-seven volatile flavor compounds were identified in five types of loquat jam using HS-GC-IMS, among which the relative content of aldehydes was sharply higher than that of other chemical substances, playing an important role in the flavor formation of loquat jam. LJ0, LJ1 and LJ2 had higher aldehyde content, followed by LJ3 and LJ4 had the lowest aldehyde content. The orthogonal partial least squares-discriminant analysis (OPLS-DA) screened 15 marker compounds that could distinguish five types of loquat jam. The E-nose results showed a significant difference in olfactory sense between loquat jam cooked for 100 and 120 min. The E-tongue results corroborated the results of free amino acids (FAAs) and organic acids, indicating that the gustatory sense of loquat jam changed significantly when the cooking time reached 120 min. The results provided a basis for further research on the relationship between the cooking process and quality characteristics of loquat jam.
Collapse
Affiliation(s)
- Mingfeng Qiao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (M.Q.); (Y.J.); (X.Z.)
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China; (H.X.); (X.C.)
| | - Huan Xiong
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China; (H.X.); (X.C.)
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Xuemei Cai
- Culinary Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China; (H.X.); (X.C.)
| | - Yuqin Jiang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (M.Q.); (Y.J.); (X.Z.)
| | - Xinxin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (M.Q.); (Y.J.); (X.Z.)
| | - Baohe Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; (M.Q.); (Y.J.); (X.Z.)
| |
Collapse
|
4
|
Zhang Q, Tang J, Deng J, Cai Z, Jiang X, Zhu C. Effect of Capsaicin Stress on Aroma-Producing Properties of Lactobacillus plantarum CL-01 Based on E-Nose and GC-IMS. Molecules 2023; 29:107. [PMID: 38202690 PMCID: PMC10780002 DOI: 10.3390/molecules29010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Capsaicin stress, along with salt stress, could be considered the main stressors for lactic acid bacteria in traditional fermented pepper products. Until now, insufficient attention has been paid to salt stress, while the effect of capsaicin on the aroma-producing properties of Lactobacillus plantarum (L. plantarum) is unclear. The present study attempted to illustrate the effect of capsaicin stress on the aroma-producing properties of L. plantarum CL-01 isolated from traditionally fermented peppers based on E-nose and GC-IMS. The results showed that E-nose could clearly distinguish the overall flavor differences of L. plantarum CL-01 under capsaicin stress. A total of 48 volatile compounds (VOCs) were characterized by means of GC-IMS, and the main VOCs belonged to acids and alcohols. Capsaicin stress significantly promoted L. plantarum CL-01 to produce alpha-pinene, ethyl crotonate, isobutyric acid, trans-2-pentenal, 2-methyl-1-butanol, 3-methyl-3-buten-1-ol, 1-penten-3-one, 2-pentanone, 3-methyl-1-butanol-D, and 2-heptanone (p < 0.05). In addition, under capsaicin stress, the contents of 1-penten-3-one, 3-methyl-3-buten-1-ol, 5-methylfurfuryl alcohol, isobutanol, 2-furanmethanethiol, 2,2,4,6,6-pentamethylheptane, 1-propanethiol, diethyl malonate, acetic acid, beta-myrcene, 2-pentanone, ethyl acetate, trans-2-pentenal, 2-methylbutyl acetate, and 2-heptanone produced by L. plantarum CL-01 were significantly increased along with the fermentation time (p < 0.05). Furthermore, some significant correlations were observed between the response values of specific E-nose sensors and effective VOCs.
Collapse
Affiliation(s)
- Qian Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.Z.); (J.T.); (Z.C.)
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.Z.); (J.T.); (Z.C.)
| | - Jing Deng
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China;
| | - Zijian Cai
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.Z.); (J.T.); (Z.C.)
| | - Xiaole Jiang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China;
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.Z.); (J.T.); (Z.C.)
| |
Collapse
|
5
|
Xiong Y, Guan J, Wu B, Wang T, Yi Y, Tang W, Zhu K, Deng J, Wu H. Exploring the Profile Contributions in Meyerozyma guilliermondii YB4 under Different NaCl Concentrations Using GC-MS Combined with GC-IMS and an Electronic Nose. Molecules 2023; 28:6979. [PMID: 37836821 PMCID: PMC10574234 DOI: 10.3390/molecules28196979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Using Meyerozyma guilliermondii YB4, which was isolated and screened from southern Sichuan pickles in the laboratory, as the experimental group, we investigated the changes in growth, total ester content, and volatile flavor substances of M. guilliermondii YB4 under different NaCl concentrations. The growth of M. guilliermondii YB4 was found to be inhibited by NaCl, and the degree of inhibition increased at higher NaCl concentrations. Additionally, the total ester content of the control group (CK) was significantly lower compared to the other groups (p < 0.05). The application of NaCl also resulted in distinct changes in the volatile profile of YB4, as evidenced by E-nose results. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography-ion mobility spectrometry (GC-IMS) were employed to analyze the volatile compounds. A total of 148 and 86 volatiles were detected and identified using GC-MS and GC-IMS, respectively. Differential volatiles among the various NaCl concentrations in YB4 were determined by a variable importance in projection (VIP) analysis in partial least squares-discriminant analysis (PLS-DA). These differentially expressed volatiles were further confirmed by their relative odor activity value (ROAV) and odor description. Ten key contributing volatiles were identified, including ethanol, 1-pentanol, nonanal, octanal, isoamyl acetate, palmitic acid ethyl ester, acrolein, ethyl isobutanoate, prop-1-ene-3,3'-thiobis, and 2-acetylpyrazine. This study provides insights into the specificities and contributions of volatiles in YB4 under different NaCl concentrations. These findings offer valuable information for the development of aroma-producing yeast agents and the subsequent enhancement in the flavor of southern Sichuan pickles.
Collapse
Affiliation(s)
- Yiling Xiong
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Ju Guan
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Baozhu Wu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Tianyang Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Yuwen Yi
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Wanting Tang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Kaixian Zhu
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Jing Deng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Huachang Wu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
6
|
Wu B, Zhu C, Deng J, Dong P, Xiong Y, Wu H. Effect of Sichuan Pepper ( Zanthoxylum genus) Addition on Flavor Profile in Fermented Ciba Chili ( Capsicum genus) Using GC-IMS Combined with E-Nose and E-Tongue. Molecules 2023; 28:5884. [PMID: 37570854 PMCID: PMC10420873 DOI: 10.3390/molecules28155884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
This study examined the flavor profiles of fermented Ciba chili, comparing samples with Sichuan pepper (HJ) to those without Sichuan pepper (CK), using three analytical techniques: E-tongue, E-nose, and gas chromatography-ion mobility spectrometry (GC-IMS). The results obtained from the E-tongue and E-nose exhibited a clear difference in taste and flavor between CK and HJ. In detail, CK mainly exhibited a sour flavor profile, whereas HJ displayed an intricate and rich flavor. The HS-GC-IMS results identified a total of 60 compounds in the samples, with terpenes, alcohols, and esters being the primary volatile flavor compounds. Additionally, Zanthoxylum was found to significantly enhance the concentration of these compounds in fermented Ciba chili. Through robust principal component analysis (rPCA), 17 distinct flavor compounds were selected. Correlation analysis revealed that most terpenes exhibited positive correlations with LY2/LG, LY2/gCT1, LY2/Gct, LY2/G, LY2/Gh, and terpenes were found in higher concentrations in HJ. This study contributes a theoretical basis and provides data support for optimizing the fermentation process and elucidating the underlying mechanism of characteristic aroma formation in Ciba chili after fermentation.
Collapse
Affiliation(s)
- Baozhu Wu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.D.); (P.D.); (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China;
| | - Jing Deng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.D.); (P.D.); (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Ping Dong
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.D.); (P.D.); (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Yiling Xiong
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.D.); (P.D.); (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Huachang Wu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.D.); (P.D.); (Y.X.)
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|